

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 07-Aug-2020
Document Type: USP Monographs
DocId: GUID-732CB4AE-674B-44DE-B9D7-73D333FA449A_7_en-US
DOI: https://doi.org/10.31003/USPNF_M1034_07_01
DOI Ref: vo0fw

© 2025 USPC
Do not distribute

Propafenone Hydrochloride Extended-Release Capsules

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click
<https://www.uspnf.com/rb/propafenone-hcl-erc-20200806>.

DEFINITION

Propafenone Hydrochloride Extended-Release Capsules contain NLT 90.0% and NMT 110.0% of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$).

IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197K
- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: Dissolve 1.36 g/L of [monobasic potassium phosphate](#) in [water](#), and adjust with [phosphoric acid](#) to a pH of 3.0 ± 0.1 .

Mobile phase: [Methanol](#) and *Buffer* (50:50)

Diluent: 50% [methanol](#) in [water](#)

Standard solution: 0.1 mg/mL of [USP Propafenone Hydrochloride RS](#) in *Diluent*

Sample stock solution: Nominally 1 mg/mL of propafenone hydrochloride prepared as follows. Transfer a suitable amount of finely powdered contents from NLT 20 Capsules to an appropriate volumetric flask. Add about 60% of the final volume of *Diluent*, and sonicate with occasional swirling until the contents are completely disintegrated. Dilute with *Diluent* to volume and pass through a suitable filter of 0.45- μm pore size.

Sample solution: Nominally 0.1 mg/mL of propafenone hydrochloride in *Diluent* from the *Sample stock solution*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 250 nm

Column: 4.6-mm \times 15-cm; 5- μm packing [L7](#)

Flow rate: 1 mL/min

Injection volume: 20 μL

Run time: NLT 2 times the retention time of propafenone

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) in the portion of Capsules taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of propafenone from the *Sample solution*

r_S = peak response of propafenone from the *Standard solution*

C_S = concentration of [USP Propafenone Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of propafenone hydrochloride in the *Sample solution* (mg/mL)**Acceptance criteria:** 90.0%–110.0%**PERFORMANCE TESTS****Change to read:**

- Dissolution (711).

Test 1**Acid stage****Medium:** 0.08 N hydrochloric acid; 900 mL**Apparatus 2:** 50 rpm**Time:** 1 h**Diluent:** 6.8 g/L of monobasic potassium phosphate in water. Adjust with sodium hydroxide to a pH of 6.8.**Standard solution:** ($L/1000$) mg/mL of USP Propafenone Hydrochloride RS in *Diluent*, where L is the label claim in mg/Capsule**Sample solution:** At the specified time point, withdraw about 10 mL of the solution and pass through a suitable filter of 0.45- μ m pore size.Discard at least the first 4 mL of the filtrate. Analyze the *Sample solution* immediately.**Instrumental conditions****Mode:** UV**Analytical wavelengths:** 305 and 375 nm**Cell:** 0.2 cm**Blank:** *Medium***Analysis****Samples:** *Standard solution* and *Sample solution*Measure and subtract the absorbance at 375 nm from the absorbance at 305 nm to obtain the absorbances for the *Sample solution* and *Standard solution*.Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) dissolved:

$$\text{Result}_1 = (A_U/A_S) \times (C_S/L) \times V \times 100$$

 A_U = absorbance of the *Sample solution* A_S = absorbance of the *Standard solution* C_S = concentration of USP Propafenone Hydrochloride RS in the *Standard solution* (mg/mL) L = label claim (mg/Capsule) V = volume of *Medium*, 900 mL**Tolerances:** See Table 1.**Buffer stage**Proceed as directed in the *Acid stage*, except for the following parameters.**Buffer:** Dissolve 108.88 g of monobasic potassium phosphate in water, add 14.4 g of sodium hydroxide, mix to dissolve, and dilute with water to 1 L. Adjust with 2 N sodium hydroxide to a pH of 6.8.**Solution A:** *Buffer* and 2 N sodium hydroxide (64:36)**Medium:** At 2 h of dissolution time, add 100 mL of *Solution A*, preheated at 37°, to 900 mL of 0.08 N hydrochloric acid.**Times:** 4 and 12 h**Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the concentration (C_i) of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result}_i = (A_U/A_S) \times C_S$$

 A_U = absorbance of the *Sample solution* A_S = absorbance of the *Standard solution*

C_s = concentration of the *Standard solution* (mg/mL)Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) dissolved at each time point (*i*):

$$\text{Result}_2 = C_2 \times V \times (1/L) \times 100$$

$$\text{Result}_3 = \{[C_3 \times (V - V_s)] + (C_2 \times V_s)\} \times (1/L) \times 100$$

 C_i = concentration of propafenone hydrochloride in the portion of sample withdrawn at time point (*i*) (mg/mL) V = volume of *Medium*, 1000 mL L = label claim (mg/Capsule) V_s = volume of *Medium* taken (mL)**Tolerances:** See [Table 1](#).**Table 1**

Time Point (<i>i</i>)	Time (h)	Amount Dissolved (%)
1	1	5–25
2	4	40–70
3	12	NLT 75

The percentages of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) dissolved at the times specified conform to[Dissolution \(711\), Acceptance Table 2](#).**Test 2:** If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 2*.**Acid stage****Acid stage medium:** 0.08 N [hydrochloric acid](#); 900 mL**Apparatus 2:** 50 rpm, with sinkers**Time:** 1 h**Standard stock solution:** 0.42 mg/mL of [USP Propafenone Hydrochloride RS](#) prepared as follows. Transfer a suitable amount of [USP Propafenone Hydrochloride RS](#) to a suitable volumetric flask. Add [methanol](#), NMT 10% of the final volume, and sonicate to dissolve. Dilute with *Acid stage medium* to volume.**Standard solution:** 0.021 mg/mL of [USP Propafenone Hydrochloride RS](#) in *Acid stage medium* from the *Standard stock solution***Sample solution:** Pass the solution through a suitable filter of 0.45- μ m pore size. Dilute with *Acid stage medium* to a concentration similar to that of the *Standard solution*.**Instrumental conditions****Mode:** UV**Analytical wavelength:** 305 nm**Cell:** 1 cm**Blank:** *Acid stage medium***Analysis**After 1 h in the *Acid stage medium* and the collection of the *Sample solution*, replace the portion of solution withdrawn with an equal volume of *Acid stage medium*. Continue for an additional 1 h in *Acid stage medium*.**Samples:** *Standard solution* and *Sample solution*Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) dissolved:

$$\text{Result}_1 = (A_u/A_s) \times C_s \times D \times V \times (1/L) \times 100$$

 A_u = absorbance of the *Sample solution* A_s = absorbance of the *Standard solution*

C_s = concentration of [USP Propafenone Hydrochloride RS](#) in the *Standard solution* (mg/mL)

D = dilution factor (mL/mL)

V = volume of *Acid stage medium*, 900 mL

L = label claim (mg/Capsule)

Tolerances: See [Table 2](#).

Buffer stage

Proceed as directed in the *Acid stage*, except for the following parameters.

Buffer stage medium: After 2 h in the *Acid stage*, add 100 mL of phosphate buffer (68 g of [monobasic potassium phosphate](#) and 42 g of [sodium hydroxide](#) in 1000 mL of [water](#)), preheated at 37°, to 900 mL of *Acid stage medium*; 1000 mL.

Times: 6 and 15 h

Standard stock solution: 0.48 mg/mL of [USP Propafenone Hydrochloride RS](#) prepared as follows. Transfer a suitable amount of [USP Propafenone Hydrochloride RS](#) to a suitable volumetric flask. Add [methanol](#), NMT 10% of the final volume, and sonicate to dissolve.

Dilute with *Buffer stage medium* to volume.

Standard solution: 0.048 mg/mL of [USP Propafenone Hydrochloride RS](#) in *Buffer stage medium* from *Standard stock solution*

Sample solution: Withdraw a 10-mL aliquot at each time point. Pass the solution through a suitable filter of 0.45-μm pore size. Dilute with *Buffer stage medium* to a concentration similar to that of the *Standard solution*.

Blank: *Buffer stage medium*

Instrumental conditions: See *Acid stage*.

Analysis

At the specified time points, replace the portion of solution withdrawn with 10 mL of *Buffer stage medium*.

Samples: *Standard solution* and *Sample solution*

Calculate the concentration (C_i) of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result}_i = (A_U/A_S) \times C_s \times D$$

A_U = absorbance of the *Sample solution*

A_S = absorbance of the *Standard solution*

C_s = concentration of [USP Propafenone Hydrochloride RS](#) in the *Standard solution* (mg/mL)

D = dilution factor (mL/mL)

Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) dissolved at each time point (i):

$$\text{Result}_2 = \{[C_2 \times V] + (C_1 \times V_S)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{[C_3 \times V] + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of propafenone hydrochloride in the portion of sample withdrawn at time point (i) (mg/mL)

V = volume of *Buffer stage medium*, 1000 mL

V_S = volume of the *Sample solution* withdrawn from the *Buffer stage medium* (mL)

L = label claim (mg/Capsule)

Tolerances: See [Table 2](#).

Table 2

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	5–25

Time Point (<i>i</i>)	Time (h)	Amount Dissolved (%)
2	6	45–65
3	15	NLT 80

The percentages of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) dissolved at the times specified conform to

[Dissolution \(711\), Acceptance Table 2](#).

Test 3: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 3*.

Acid stage

Acid stage medium: 0.08 N [hydrochloric acid](#); 900 mL

Apparatus 2: 50 rpm, with sinkers

Time: 2 h

Phosphate buffer: Dissolve 190.06 g of [tribasic sodium phosphate](#) in 1 L of [water](#).

Diluent: Phosphate buffer and Acid stage medium (12:88). Adjust the pH to 6.8 with [phosphoric acid](#) or [sodium hydroxide](#) if necessary.

Standard solution: ($L/1000$) mg/mL of [USP Propafenone Hydrochloride RS](#), where L is the label claim in mg/Capsule, prepared as follows.

Transfer a suitable amount of [USP Propafenone Hydrochloride RS](#) to a suitable volumetric flask. Dissolve with 10% of final volume of [methanol](#) with aid of sonication. Dilute with *Diluent* to volume.

Sample solution: At the specified time point, withdraw 10 mL of the solution under test and centrifuge. Use the supernatant.

Instrumental conditions

Mode: UV

Analytical wavelengths: 305 nm

Cell: 0.2 cm

Blank: *Diluent*

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) dissolved:

$$\text{Result}_1 = (A_u/A_s) \times (C_s/L) \times V \times 100$$

A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution*

C_s = concentration of [USP Propafenone Hydrochloride RS](#) in the *Standard solution* (mg/mL)

L = label claim (mg/Capsule)

V = volume of *Acid stage medium*, 900 mL

Tolerances: See [Table 3](#).

Buffer stage

Proceed as directed in the *Acid stage*, except for the following parameters.

Buffer stage medium: After the samples are withdrawn at 2 h, add 110 mL or appropriate amount of *Phosphate buffer*, preheated at 37°, to *Acid stage medium*, and adjust the pH to 6.8 with [phosphoric acid](#) or [sodium hydroxide](#) if necessary; 1000 mL.

Times: 4 and 12 h

Sample solution: At the specified time points, withdraw 10 mL of the solution and centrifuge. Use the supernatant.

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result}_i = (A_u/A_s) \times C_s$$

A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution* C_s = concentration of the *Standard solution* (mg/mL)Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) dissolved at each time point (i):

$$\text{Result}_2 = \{[C_2 \times (V - V_s)] + [C_1 \times V_s]\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{[C_3 \times (V - (2 \times V_s))] + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

 C_i = concentration of propafenone hydrochloride in the portion of sample withdrawn at time point (i) (mg/mL) V = volume of *Buffer stage medium*, 1000 mL V_s = volume of *Sample solution* withdrawn (mL) L = label claim (mg/Capsule)**Tolerances:** See [Table 3](#).**Table 3**

Time Point (i)	Time (h)	Amount Dissolved (%)
1	2	NMT 30
2	4	35–60
3	12	NLT 80

The percentages of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) dissolved at the times specified conform to[Dissolution \(711\), Acceptance Table 2](#).**Test 4:** If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 4*.**Acid stage****Acid stage medium:** 0.08 N [hydrochloric acid](#); 900 mL**Apparatus 2:** 50 rpm**Time:** 2 h**Diluent:** Dissolve 6.8 g of [monobasic potassium phosphate](#) with 1 L of [water](#). Adjust with [sodium hydroxide](#) to a pH of 6.8.**Standard solution:** 0.325 mg/mL of [USP Propafenone Hydrochloride RS](#) in *Diluent*

[NOTE—Sonication may be needed for dissolution.]

Sample solution: At the specified time point, withdraw 5 mL of the solution and pass through a suitable filter. Replace the portion of solution withdrawn with an equal volume of *Medium*.**Instrumental conditions****Mode:** UV**Analytical wavelengths:** 305 and 375 nm**Cell:** 0.2 cm**Blank:** *Diluent***Analysis****Samples:** *Standard solution* and *Sample solution*Measure and subtract the absorbance at 375 nm from the absorbance at 305 nm to obtain the absorbances for the *Sample solution* and *Standard solution*.Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) dissolved:

$$\text{Result}_1 = (A_u/A_s) \times (C_s/L) \times V \times 100$$

 A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution* C_s = concentration of [USP Propafenone Hydrochloride RS](#) in the *Standard solution* (mg/mL) L = label claim (mg/Capsule) V = volume of *Medium*, 900 mL**Tolerances:** See [Table 4](#).**Buffer stage**Proceed as directed in the *Acid stage*, except for the following parameters.**Buffer:** Dissolve 108.88 g of [monobasic potassium phosphate](#) and 14.4 g of [sodium hydroxide](#) with 1 L of [water](#). Adjust with 2 N [sodium hydroxide](#) to a pH of 6.8.**Solution A:** *Buffer* and 2 N [sodium hydroxide](#) (64:36)**Medium:** At 2 h of dissolution time, add 100 mL of *Solution A*, preheated at 37°, to the vessel containing 900 mL of 0.08 N [hydrochloric acid](#).**Times:** 3, 6, and 12 h**Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the concentration (C_i) of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result}_i = (A_u/A_s) \times C_s$$

 A_u = absorbance of the *Sample solution* A_s = absorbance of the *Standard solution* C_s = concentration of the *Standard solution* (mg/mL)Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) dissolved at each time point (i):

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_s)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{[C_3 \times V] + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{[C_4 \times V] + [(C_3 + C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

 C_i = concentration of propafenone hydrochloride in the portion of sample withdrawn at time point (i) (mg/mL) V = volume of *Medium*, 1000 mL V_s = volume of *Medium* taken, 5 mL L = label claim (mg/Capsule)**Tolerances:** See [Table 4](#).**Table 4**

Time Point (i)	Time (h)	Amount Dissolved (%)
1	2	15–35
2	3	26–46
3	6	56–76
4	12	NLT 80

The percentages of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) dissolved at the times specified conform to

[Dissolution \(711\), Acceptance Table 2.](#)

▲ **Test 5:** If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 5*.

Acid stage

Acid stage medium: 0.08 N [hydrochloric acid](#); 900 mL

Apparatus 2: 50 rpm

Time: 2 h

Diluent: Dissolve 6.8 g of [monobasic potassium phosphate](#) with 900 mL of [water](#) in a 1-L volumetric flask. Adjust with 2 N [sodium hydroxide](#) to a pH of 6.8, and dilute with water to volume.

Standard solution: $L/1000$ mg/mL of [USP Propafenone Hydrochloride RS](#) in *Diluent*, where L is the label claim. Sonication may be needed for complete dissolution.

Sample solution: At the specified time point, withdraw 10 mL of the solution under test and pass through a suitable filter. Replace the portion of solution withdrawn with an equal volume of *Acid stage medium*.

Instrumental conditions

Mode: UV

Analytical wavelengths: 305 and 375 nm

Cell: 0.2 cm

Blank: *Diluent*

Analysis

Samples: *Standard solution* and *Sample solution*

Measure and subtract the absorbance at 375 nm from the absorbance at 305 nm to obtain the absorbances for the *Sample solution* and *Standard solution*.

Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) dissolved:

$$\text{Result}_1 = (A_u/A_s) \times (C_s/L) \times V \times 100$$

A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution*

C_s = concentration of [USP Propafenone Hydrochloride RS](#) in the *Standard solution* (mg/mL)

L = label claim (mg/Capsule)

V = volume of *Acid stage medium*, 900 mL

Tolerances: See [Table 5](#).

Buffer stage: Proceed as directed in the *Acid stage* except for the following parameters.

Buffer: Dissolve 108.88 g of [monobasic potassium phosphate](#) in 400 mL of water in a 1-L volumetric flask, and add 14.4 g of [sodium hydroxide](#). Dilute with [water](#) to volume, and adjust with 2 N [sodium hydroxide](#) to a pH of 6.8.

Solution A: *Buffer* and 2 N [sodium hydroxide](#) (64:36)

Buffer stage medium: At 2 h of dissolution time, add 100 mL of *Solution A*, preheated at 37°, to the vessel containing 900 mL of 0.08 N [hydrochloric acid](#).

Times: 4 and 10 h

Analysis

Samples: *Standard solution* and *Sample solution*

Measure and subtract the absorbance at 375 nm from the absorbance at 305 nm to obtain the absorbances for the *Sample solution* and *Standard solution*.

Calculate the concentration (C_i) of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result}_i = (A_u/A_s) \times C_s$$

A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution*

C_s = concentration of the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) dissolved at each time point (i):

$$\text{Result}_2 = \{[C_2 \times (V - V_s)] + [C_1 \times V_s]\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{[C_3 \times [V - (2 \times V_s)]] + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

C_i = concentration of propafenone hydrochloride in the portion of sample withdrawn at time point (i) (mg/mL)

V = volume of *Buffer stage medium*, 1000 mL

V_s = volume of sample withdrawn from vessel, 10 mL

L = label claim (mg/Capsule)

Tolerances: See [Table 5](#).

Table 5

Time Point (i)	Time (h)	Amount Dissolved (%)
1	2	15–35
2	4	39–59
3	10	NLT 80

The percentages of the labeled amount of propafenone hydrochloride ($C_{21}H_{27}NO_3 \cdot HCl$) dissolved at the times specified conform to

[Dissolution \(711\)](#), [Acceptance Table 2](#).▲ (RB 7-Aug-2020)

- **UNIFORMITY OF DOSAGE UNITS (905):** Meet the requirements

IMPURITIES

Change to read:

- **ORGANIC IMPURITIES**

Keep all solutions containing propafenone hydrochloride in amber glassware.

Solution A: 0.015 M [dibasic potassium phosphate](#). Adjust with [phosphoric acid](#) to a pH of 2.5 ± 0.2 .

Solution B: [Acetonitrile](#)

Mobile phase: See ▲ [Table 6](#).

Table 6▲ (RB 7-Aug-2020)

Time (min)	Solution A (%)	Solution B (%)
0	65	35
8	65	35
20	30	70
30	30	70
31	65	35
36	65	35

Diluent: 50% [methanol](#) in [water](#)

System suitability solution: 0.1 mg/mL each of [USP Propafenone Hydrochloride RS](#) and [USP Propafenone Related Compound B RS](#) in *Diluent*

Standard solution: 2.0 μ g/mL of [USP Propafenone Hydrochloride RS](#) in *Diluent*. Sonicate if necessary.

Sensitivity solution: 0.3 μ g/mL of [USP Propafenone Hydrochloride RS](#) in *Diluent* from the *Standard solution*

Sample solution: Nominally 1 mg/mL of propafenone hydrochloride, prepared as follows. Transfer a suitable amount of finely powdered contents from NLT 20 Capsules to an appropriate volumetric flask. Add about 40% of the final volume of *Diluent* and sonicate for about 15 min. Dilute with *Diluent* to volume and pass through a suitable filter of 0.45- μ m pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing L7

Column temperature: 30°

Flow rate: 1 mL/min

Injection volume: 20 μ L

System suitability

Samples: System suitability solution, Standard solution, and Sensitivity solution

Suitability requirements

Resolution: NLT 3.0 between propafenone related compound B and propafenone, System suitability solution

Relative standard deviation: NMT 5.0%, Standard solution

Signal-to-noise ratio: NLT 10, Sensitivity solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each individual unspecified degradation product in the portion of Capsules taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of each unspecified degradation product from the *Sample solution*

r_s = peak response of propafenone from the *Standard solution*

C_s = concentration of [USP Propafenone Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of propafenone hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: See ▲[Table 7](#) ▲ (RB 7-Aug-2020) Disregard any peaks below 0.03% (peak area less than that of the *Sensitivity solution*).

▲**Table 7** ▲ (RB 7-Aug-2020)

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Propafenone related compound B ^{a,b}	0.81	—
Propafenone	1.00	—
Propafenone glycerol analog ^{a,c}	2.53	—
Flavone ^{a,d}	2.83	—
Propafenone dimer ^{a,e}	2.88	—
Propafenone chloroglycerol analog ^{a,f}	2.91	—

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Propafenone glycidyl analog ^{a,g}	2.96	—
Propafenone phenol ^{a,h}	3.29	—
Propafenone glycerol dimer ^{a,i}	3.80	—
Any unspecified degradation product	—	0.15
Total degradation products	—	0.50

^a Process impurities; do not include in total degradation products.

^b (RS,E)-1-{2-[2-Hydroxy-3-(propylamino)propoxy]phenyl}-3-phenylprop-2-en-1-one.

^c 1-[2-[(2RS)-2,3-Dihydroxypropoxy]phenyl]-3-phenylpropan-1-one.

^d 2-Phenylchroman-4-one.

^e 1,1'-[Propyliminobis(2-hydroxypropane-3,1-diyl)oxy-2,1-phenylene]bis(3-phenylpropan-1-one).

^f 1-[2-(3-Chloro-2-hydroxypropoxy)phenyl]-3-phenylpropan-1-one.

^g 1-[2-[(RS)-Oxiranyl]methoxy]phenyl]-3-phenylpropan-1-one.

^h 1-(2-Hydroxyphenyl)-3-phenylpropan-1-one.

ⁱ 1,1'-(2,2'-(2-Hydroxypropane-1,3-diyl)bis(oxy)bis(2,1-phenylene))bis(3-phenylpropan-1-one).

Change to read:

• **CONTENT OF PROPafenone RELATED COMpound A**

Buffer: Dissolve 3.4 g of [dibasic potassium phosphate](#) in 1000 mL of [water](#), and adjust with [phosphoric acid](#) to a pH of 2.5 ± 0.05 .

Solution A: [Methanol](#) and **Buffer** (45:55); pass through a suitable filter of 0.2- μ m pore size.

Solution B: [Methanol](#) and **Buffer** (75:25); pass through a suitable filter of 0.2- μ m pore size.

Mobile phase: See ▲ [Table 8](#).

Table 8 ▲ (RB 7-Aug-2020)

Time (min)	Solution A (%)	Solution B (%)
0	100	0
4.0	100	0
7.0	50	50
10.0	0	100
12.0	0	100
12.5	100	0
15.0	100	0

Diluent: [Methanol](#) and [water](#) (80:20)

Standard solution: 2.0 μ g/mL of [USP Propafenone Related Compound A RS](#) in **Diluent**

Sensitivity solution: 0.2 μ g/mL of [USP Propafenone Related Compound A RS](#) in **Diluent** from the **Standard solution**

Sample solution: Nominally 1 mg/mL of propafenone hydrochloride prepared as follows. Transfer a suitable amount of finely powdered contents from NLT 20 Capsules to an appropriate volumetric flask. Add about 75% of the final volume of *Diluent* and sonicate with intermittent shaking for 20 min. Dilute with *Diluent* to volume and pass through a suitable filter of 0.45- μ m pore size. Discard the first 4 mL of the filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 250 nm

Column: 2.1-mm \times 10-cm; 1.7- μ m packing L1

Column temperature: 60°

Flow rate: 0.4 mL/min

Injection volume: 4 μ L

System suitability

Samples: Standard solution and Sensitivity solution

Suitability requirements

Tailing factor: NMT 2.0, Standard solution

Relative standard deviation: NMT 6.0%, Standard solution

Signal-to-noise ratio: NLT 10, Sensitivity solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of propafenone related compound A in the portion of Capsules taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of propafenone related compound A from the Sample solution

r_S = peak response of propafenone related compound A from the Standard solution

C_S = concentration of [USP Propafenone Related Compound A RS](#) in the Standard solution (mg/mL)

C_U = nominal concentration of propafenone hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: See ▲[Table 9](#).

Table 9▲ (RB 7-Aug-2020)

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Propafenone	1.0	—
Propafenone related compound A ^a	1.9	0.20

^a *N*-(2-Hydroxy-3-[2-(3-phenylpropanoyl)phenoxy]propyl)-*N*-propylformamide.

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE:** Keep in tight containers and store at controlled room temperature.
- LABELING:** When more than one test for *Dissolution* is given, the *Labeling* section states the test for *Dissolution* used only if *Test 1* is not used.
- USP REFERENCE STANDARDS (11).**

[USP Propafenone Hydrochloride RS](#)

[USP Propafenone Related Compound A RS](#)

N-(2-Hydroxy-3-[2-(3-phenylpropanoyl)phenoxy]propyl)-*N*-propylformamide.

$C_{22}H_{27}NO_4$ 369.45

[USP Propafenone Related Compound B RS](#)

(*RS,E*)-1-(2-[2-Hydroxy-3-(propylamino)propoxy]phenyl)-3-phenylprop-2-en-1-one.

$C_{21}H_{25}NO_3$ 339.43

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
PROPafenone HYDROchloride EXTENDED-RELEASE CAPSULES	Documentary Standards Support	SM22020 Small Molecules 2
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 40(3)

Current DocID: GUID-732CB4AE-674B-44DE-B9D7-73D333FA449A_7_en-US

DOI: https://doi.org/10.31003/USPNF_M1034_07_01

DOI ref: vo0fw

OFFICIAL