

Status: Currently Official on 16-Feb-2025

Official Date: Official as of 01-Dec-2022

Document Type: USP Monographs

DocId: GUID-F7D0DBAE-9E8C-40C6-A2A3-AAF88DB58B94_4_en-US

DOI: https://doi.org/10.31003/USPNF_M69440_04_01

DOI Ref: f9hn

© 2025 USPC

Do not distribute

Procaine Hydrochloride and Epinephrine Injection

(This monograph has been updated to the current USP style. No revisions or changes to tests have been made.)

DEFINITION

Procaine Hydrochloride and Epinephrine Injection is a sterile solution of Procaine Hydrochloride and Epinephrine Hydrochloride in Water for Injection. The content of epinephrine is NMT 0.002% (1 in 50,000). It contains NLT 95.0% and NMT 105.0% of the labeled amount of procaine hydrochloride ($C_{13}H_{20}N_2O_2 \cdot HCl$), and NLT 90.0% and NMT 115.0% of the labeled amount of epinephrine ($C_9H_{13}NO_3$).

IDENTIFICATION

• A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197K

Sample: Evaporate a portion of Injection, equivalent to 20 mg of procaine hydrochloride, on a steam bath just to dryness, and dry over [silica gel](#) for 18 h, protected from light. Use the residue for the test.

• B.

Solution A: 100 mg/mL of [sodium hydroxide](#) in [water](#)

Solution B: 20 mg/mL of [2-naphthol](#) in [Solution A](#)

Analysis: Dissolve 10 mg of the residue obtained in *Identification A* in 1 mL of [water](#), add 1 drop each of [hydrochloric acid](#) and 100 mg/mL of [sodium nitrite](#) in [water](#), then add 1 mL of [Solution B](#), and shake.

Acceptance criteria: A scarlet-red precipitate is formed.

ASSAY

• **PROCAINE HYDROCHLORIDE**

Standard solution: Transfer to a 125-mL separator about 50 mg, accurately weighed, of [USP Procaine Hydrochloride RS](#) and dissolve in 20 mL of [water](#).

Sample solution: Transfer to a 125-mL separator an accurately measured volume of Injection, equivalent to about 50 mg of procaine hydrochloride, and dilute with [water](#) to 20 mL.

Instrumental conditions

Mode: UV

Analytical wavelength: 280 nm

Blank: [Chloroform](#)

Analysis

Samples: *Standard solution* and *Sample solution*

Add 5 mL of [ammonium hydroxide, 6 N](#), to both the *Standard solution* and *Sample solution*, then treat each as follows. Extract with five 25-mL portions of [chloroform](#), and filter the combined extracts through 1 g of [sodium sulfate, anhydrous](#) supported on a pledget of glass wool. Receive the filtrate in a 200-mL volumetric flask, and add [chloroform](#) to volume. Transfer 3.0 mL of this solution to a 100-mL volumetric flask, and add [chloroform](#) to volume. Concomitantly determine the absorbances of both solutions using the *Blank*.

Calculate the percentage of the labeled amount of procaine hydrochloride ($C_{13}H_{20}N_2O_2 \cdot HCl$) in the portion of Injection taken:

$$\text{Result} = (A_U/A_S) \times (C_S/C_U) \times 100$$

A_U = absorbance of the *Sample solution*

A_S = absorbance of the *Standard solution*

C_S = concentration of [USP Procaine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of procaine hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: 95.0%–105.0%

• CONTENT OF EPINEPHRINE

Solution A: [Alcohol](#), 200 mg/mL of [sodium hydroxide](#) in [water](#), and 20 mg/mL of [ascorbic acid](#) in [water](#) (25:20:2). Prepare fresh on the day of use.

Standard stock solution: 0.18 mg/mL of [USP Epinephrine Bitartrate RS](#) prepared as follows. Transfer 18 mg of [USP Epinephrine Bitartrate RS](#) in a 100-mL volumetric flask and add sodium bisulfite solution (1 in 1000) to volume.

Standard solution: 10 μ g/mL of epinephrine from *Standard stock solution* in [water](#)

Sample solution: A portion of *Injection* nominally equivalent to 10 μ g of epinephrine

Instrumental conditions

Mode: Fluorescence

Excitation wavelength: 420 nm

Detection wavelength: 520 nm

Blank: [Water](#)

Analysis

Samples: *Standard solution* and *Sample solution*

Pipet 1 mL of the *Sample solution* and *Standard solution* into separate 50-mL beakers. Treat the contents of each beaker as follows. Add 10 mL of dilute [hydrochloric acid](#) (1 in 120), and heat gently to reduce the volume of solution to 5 mL. Allow to cool to room temperature, then add 5 mL of [sodium acetate](#) solution (1 in 5), followed by 0.5 mL of [potassium ferricyanide](#) solution (1 in 400). At 2 min, accurately timed, after the last addition, add 20 mL of *Solution A*, transfer the contents to a corresponding 50-mL volumetric flask with the aid of [water](#), and add [water](#) to volume. At 15–20 min after the addition of *Solution A*, determine the fluorescences of each solution and of a reagent blank.

Calculate the percentage of the labeled amount of epinephrine ($C_9H_{13}NO_3$) in the portion of *Injection* taken:

$$\text{Result} = [(I_U - B)/(I_S - B)] \times (C_S/C_U)$$

I_U = fluorescence reading of the *Sample solution*

B = fluorescence reading of the *Blank*

I_S = fluorescence reading of the *Standard solution*

C_S = concentration of epinephrine of [USP Epinephrine Bitartrate RS](#) in the *Standard solution* (μ g/mL)

C_U = nominal concentration of epinephrine in the *Sample solution* (μ g/mL)

Acceptance criteria: 90.0%–115.0%

SPECIFIC TESTS**• COLOR AND CLARITY**

Standard solution: 0.1 N iodine [VS](#) and [water](#) (1:249)

Sample solution: A portion of *Injection*

Instrumental conditions

Mode: Vis

Analytical wavelength: 460 nm

Cell: 1 cm

Analysis

Samples: *Standard solution* and *Sample solution*

Visually examine a portion of the *Sample solution* in a suitable clear glass test tube against a white background: it is not pinkish and it contains no precipitate. If any yellow color is observed in the *Sample solution*, concomitantly determine the absorbances of the *Sample solution* and the *Standard solution*.

Acceptance criteria: The absorbance of the *Sample solution* does not exceed that of the *Standard solution*.

• BACTERIAL ENDOTOXINS TEST (85): It contains NMT 0.6 USP Endotoxin Units/mg of procaine hydrochloride.

• pH (791): 3.0–5.5

• OTHER REQUIREMENTS: Meets the requirements in [Injections and Implanted Drug Products \(1\)](#).

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE: Preserve in single-dose or in multiple-dose, light-resistant containers, preferably of Type I or Type II glass.

• LABELING: The label indicates that the *Injection* is not to be used if its color is pinkish or darker than slightly yellow or if it contains a precipitate.

• USP REFERENCE STANDARDS (11):

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
PROCAINE HYDROCHLORIDE AND EPINEPHRINE INJECTION	Documentary Standards Support	SM52020 Small Molecules 5
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM52020 Small Molecules 5

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. Information currently unavailable

Current DocID: GUID-F7D0DBAE-9E8C-40C6-A2A3-AAF88DB58B94_4_en-US

DOI: https://doi.org/10.31003/USPNF_M69440_04_01

DOI ref: fij9hn

OFFICIAL