

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-69F28F5F-72A6-48DB-8864-0CC5BFBD438F_4_en-US
DOI: https://doi.org/10.31003/USPNF_M68450_04_01
DOI Ref: e7kne

© 2025 USPC
Do not distribute

Praziquantel

$C_{19}H_{24}N_2O_2$ 312.41

4H-Pyrazino[2,1-a]isoquinolin-4-one, 2-(cyclohexylcarbonyl)-1,2,3,6,7,11b-hexahydro-; 2-(Cyclohexylcarbonyl)-1,2,3,6,7,11b-hexahydro-4H-pyrazino[2,1-a]isoquinolin-4-one CAS RN®: 55268-74-1; UNII: 6490C9U457.

DEFINITION

Praziquantel contains NLT 98.5% and NMT 101.0% of praziquantel ($C_{19}H_{24}N_2O_2$), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. ▲ [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197K](#) ▲ (CN 1-MAY-2020)
- B. The retention time of the major peak of the *Sample* solution corresponds to that of the *Standard* solution, as obtained in the Assay.

ASSAY

• PROCEDURE

Mobile phase: Acetonitrile and water (60:40)

Standard solution: 0.18 mg/mL of [USP Praziquantel RS](#) in *Mobile phase*

Sample solution: 0.18 mg/mL of Praziquantel in *Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4-mm × 25-cm; 10-μm packing L1

Flow rate: 1.5 mL/min

Injection volume: 10 μL

System suitability

Sample: *Standard* solution

Suitability requirements

Tailing factor: NMT 1.5

Relative standard deviation: NMT 1.0%

Analysis

Samples: *Standard* solution and *Sample* solution

Calculate the percentage of praziquantel ($C_{19}H_{24}N_2O_2$) in the portion of Praziquantel taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response from the *Sample* solution

r_S = peak response from the *Standard* solution

C_S = concentration of [USP Praziquantel RS](#) in the *Standard* solution (mg/mL)

C_U = concentration of Praziquantel in the *Sample solution* (mg/mL)**Acceptance criteria:** 98.5%–101.0% on the dried basis**IMPURITIES**

- **RESIDUE ON IGNITION (281):** NMT 0.1%
- **LIMIT OF PHOSPHATE**

Solution A: Dissolve 250 mg of cupric sulfate and 4.5 g of ammonium acetate in sufficient 2 N acetic acid to obtain 100 mL of solution.**Solution B:** 30 mg/mL of ammonium molybdate**Solution C:** Grind in a mortar 5 g of sodium sulfite, 94.3 g of sodium metabisulfite, and 700 mg of 4-amino-3-hydroxy-1-naphthalenesulfonic acid. Dissolve 1.5 g of this mixture in 10 mL of water, heating gently if necessary. Use this solution only when freshly prepared.**Standard stock solution:** 100 µg/mL of phosphate $(PO_4)^{3-}$ prepared as follows. Dissolve 143.3 mg of dried monobasic potassium phosphate in water to make 1000 mL of solution.**Standard solution:** 5 µg/mL of phosphate $(PO_4)^{3-}$ from the *Standard stock solution***Sample solution:** 10 mg/mL of Praziquantel, prepared as follows. Add 30 mL of water to 500 mg of sample, and heat to boiling. Allow to cool, and filter, collecting the filtrate in a 50-mL volumetric flask. Wash the filter with water, collect the washings in the volumetric flask, and dilute with water to volume.**Analysis:** Treat 10 mL of the *Standard solution* and 10 mL of the *Sample solution* as follows. To each, add 5 mL of *Solution A*, 2 mL of *Solution B*, 1 mL of *Solution C*, and 1 mL of perchloric acid solution (3 in 100); mix; and allow to stand for 15 min.**Acceptance criteria:** The *Sample solution* does not have a blue color that is darker than that of the *Standard solution* (0.05%).**• ORGANIC IMPURITIES****Mobile phase and Chromatographic system:** Proceed as directed in the Assay.**Standard solution:** 0.04 mg/mL each of [USP Praziquantel Related Compound A RS](#), [USP Praziquantel Related Compound B RS](#), and [USP Praziquantel Related Compound C RS](#) in *Mobile phase***Sample solution:** 20 mg/mL of Praziquantel in *Mobile phase***Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentages of praziquantel related compound A, praziquantel related compound B, or praziquantel related compound C in the portion of Praziquantel taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of praziquantel related compound A, praziquantel related compound B, or praziquantel related compound C from the *Sample solution* r_S = peak response of praziquantel related compound A, praziquantel related compound B, or praziquantel related compound C from the *Standard solution* C_S = concentration of [USP Praziquantel Related Compound A RS](#), [USP Praziquantel Related Compound B RS](#), or [USP Praziquantel Related Compound C RS](#) in the *Standard solution* (mg/mL) C_U = concentration of Praziquantel in the *Sample solution* (mg/mL)**Acceptance criteria:** See [Table 1](#).**Table 1**

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Praziquantel related compound A ^a	0.8	0.2
Praziquantel	1.0	—
Praziquantel related compound B ^b	1.8	0.2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Praziquantel related compound C ^c	2.1	0.2

^a 2-Benzoyl-1,2,3,6,7,11b-hexahydro-4H-pyrazino [2,1-a]isoquinolin-4-one.

^b 2-(Cyclohexylcarbonyl)-2,3,6,7-tetrahydro-4H-pyrazino [2,1-a]isoquinolin-4-one.

^c 2-(N-Formylhexahydrohippuroyl-1,2,3,4-tetrahydroisoquinolin-1-one.

SPECIFIC TESTS

- [Loss on Drying \(731\)](#).

Analysis: Dry a sample in a vacuum at a pressure not exceeding 5 mm of mercury at 50° over phosphorus pentoxide for 2 h.

Acceptance criteria: NMT 0.5%

ADDITIONAL REQUIREMENTS

- [PACKAGING AND STORAGE:](#) Preserve in well-closed, light-resistant containers.

- [USP REFERENCE STANDARDS \(11\)](#).

[USP Praziquantel RS](#)

[USP Praziquantel Related Compound A RS](#)

2-Benzoyl-1,2,3,6,7,11b-hexahydro-4H-pyrazino [2,1-a]isoquinolin-4-one.

$C_{19}H_{18}N_2O_2$ 306.37

[USP Praziquantel Related Compound B RS](#)

2-(Cyclohexylcarbonyl)-2,3,6,7-tetrahydro-4H-pyrazino [2,1-a]isoquinolin-4-one.

$C_{19}H_{22}N_2O_2$ 310.40

[USP Praziquantel Related Compound C RS](#)

2-(N-Formylhexahydrohippuroyl-1,2,3,4-tetrahydroisoquinolin-1-one.

$C_{19}H_{22}N_2O_4$ 342.39

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
PRAZIQUANTEL	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 38(2)

Current DocID: [GUID-69F28F5F-72A6-48DB-8864-0CC5BFBD438F_4_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M68450_04_01

DOI ref: [e7kne](#)