


Status: Currently Official on 16-Feb-2025  
Official Date: Official as of 01-Nov-2020  
Document Type: NF Monographs  
DocId: GUID-C8AFACAF-0D82-45A5-BC8D-58739745E9CE\_4\_en-US  
DOI: [https://doi.org/10.31003/USPNF\\_M68040\\_04\\_01](https://doi.org/10.31003/USPNF_M68040_04_01)  
DOI Ref: eh3w2

© 2025 USPC  
Do not distribute

## Potassium Sorbate

### Change to read:



$C_6H_7KO_2$  150.22

2,4-Hexadienoic acid, (*E,E*)-, potassium salt;

▲ Potassium (*2E,4E*)-hexa-2,4-dienoate; ▲ (NF 1-May-2020)

Potassium (*E,E*)-sorbate ▲ (NF 1-May-2020) CAS RN®: 590-00-1; .24634-61-5.

### DEFINITION

#### Change to read:

Potassium Sorbate contains NLT 98.0% and NMT ▲102.0% ▲ (NF 1-May-2020) of potassium sorbate ( $C_6H_7KO_2$ ), calculated on the dried basis.

### IDENTIFICATION

• A. [IDENTIFICATION TESTS—GENERAL \(191\), Chemical Identification Tests, Potassium](#)

**Sample:** Dissolve 1 g of Potassium Sorbate in 10 mL of water.

**Acceptance criteria:** Meets the requirements

#### Change to read:

• B. ▲[SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197A or 197K ▲ (NF 1-May-2020)

### ASSAY

#### Delete the following:

▲• Procedure

**Sample:** 300 mg of Potassium Sorbate

**Blank:** 40 mL of glacial acetic acid

**Titrimetric system**

(See [Titrimetry \(541\)](#).)

**Mode:** Direct titration

**Titrant:** 0.1 N perchloric acid VS

**Endpoint detection:** Visual

**Analysis:** Dissolve the *Sample* in 40 mL of glacial acetic acid, warming, if necessary, to dissolve the solution. Cool to room temperature, and add 1 drop of crystal violet TS. Titrate with *Titrant* to a blue-green endpoint. Perform a blank determination.

Calculate the percentage of potassium sorbate ( $C_6H_7KO_2$ ) in the *Sample* taken:

$$\text{Result} = \{[(V_S - V_B) \times N \times F]/W\} \times 100$$

$V_S$  = *Titrant* consumed by the *Sample* (mL)

$V_B$  = *Titrant* consumed by the *Blank* (mL)

$N$  = actual normality of the *Titrant* (mEq/mL)

$F$  = equivalency factor, 150.2 mg/mEq

$W$  = Sample weight (mg)**Acceptance criteria:** 98.0%–101.0% on the dried basis▲ (NF 1-May-2020)**Add the following:****▲• Procedure 1: Content of Potassium Sorbate****Solution A:** 0.1% (v/v) [trifluoroacetic acid](#) in water**Solution B:** 0.1% (v/v) [trifluoroacetic acid](#) in [methanol](#)**Mobile phase:** See [Table 1](#).**Table 1**

| Time<br>(min) | Solution A<br>(%) | Solution B<br>(%) |
|---------------|-------------------|-------------------|
| 0             | 75                | 25                |
| 17.0          | 75                | 25                |
| 18.0          | 5                 | 95                |
| 23.0          | 5                 | 95                |
| 23.1          | 75                | 25                |
| 30.0          | 75                | 25                |

**Diluent:** Water and [methanol](#) (1:1, v/v)**System suitability solution:** Prepare 0.1 mg/mL of [USP Potassium Sorbate RS](#) in *Diluent* first and then treat the solution with UV irradiation to generate ~1% degradation of potassium sorbate (based on area%).<sup>1</sup>**Standard solution:** 0.1 mg/mL of [USP Potassium Sorbate RS](#) in *Diluent***Sample solution:** 0.1 mg/mL of Potassium Sorbate in *Diluent***Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 264 nm**Column:** 4.6-mm × 15-cm; 3.5-μm packing [L1](#)**Column temperature:** 40°**Flow rate:** 1.0 mL/min**Injection volume:** 10 μL**Run time:** 30 min**System suitability****Samples:** System suitability solution and Standard solution[NOTE—The approximate relative retention times of related substances are listed in [Table 2](#).]**Suitability requirements****Resolution:** NLT 1.5 between potassium sorbate and potassium sorbate *trans, cis* isomer, System suitability solution**Tailing factor:** NMT 2.0, determined from potassium sorbate, Standard solution**Relative standard deviation:** NMT 2.0%, determined from potassium sorbate, Standard solution**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of potassium sorbate in the sample taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 $r_U$  = peak area of potassium sorbate from the *Sample solution* $r_S$  = peak area of potassium sorbate from the *Standard solution*

$C_s$  = concentration of [USP Potassium Sorbate RS](#) in the *Standard solution* (mg/mL) $C_u$  = concentration of Potassium Sorbate in the *Sample solution* (mg/mL)**Acceptance criteria:** 98.0%–102.0% on the dried basis**Table 2**

| Name                                                    | Relative Retention Time |
|---------------------------------------------------------|-------------------------|
| Potassium sorbate <i>cis, cis</i> isomer <sup>a</sup>   | 0.83                    |
| Potassium sorbate <i>cis, trans</i> isomer <sup>b</sup> | 0.89                    |
| Potassium sorbate <i>trans, cis</i> isomer <sup>c</sup> | 0.92                    |
| Potassium sorbate                                       | 1.0                     |

<sup>a</sup> Potassium (*Z,Z*)-sorbate.<sup>b</sup> Potassium (*Z,E*)-sorbate.<sup>c</sup> Potassium (*E,Z*)-sorbate.

[**Note**—Potassium sorbate *cis, trans* isomer and potassium sorbate *trans, cis* isomer might co-elute in some columns, which has no effects on assay analysis. All the four isomers are in their corresponding sorbic acid forms in the HPLC column because of the acidic mobile phase condition.]▲ (NF 1-MAY-2020)

**Add the following:****▲• Procedure 2: Content of Potassium****Diluent:** 1% [hydrochloric acid](#) solution**Sodium chloride solution:** 0.2 g/mL of [sodium chloride](#) in *Diluent***Blank solution:** 4 mg/mL of [sodium chloride](#) from *Sodium chloride solution* in *Diluent***Standard stock solution:** 57.21 µg/mL of [potassium chloride](#), previously dried at 105° for 2 h, in water. This solution contains 30 µg/mL of potassium.**Standard solutions:** Transfer 2.0-, 4.0-, and 6.0-mL portions of the *Standard stock solution* to separate 100-mL volumetric flasks. To each flask add 2.0 mL of the *Sodium chloride solution*. Dilute the content of each flask with *Diluent* to volume and mix to obtain solutions with known concentrations of 0.6, 1.2, and 1.8 µg/mL of potassium.**Sample stock solution:** 0.46 mg/mL of Potassium Sorbate in water**Sample solution:** Transfer 1.0 mL of the *Sample stock solution* to a 100-mL volumetric flask. Add 2.0 mL of the *Sodium chloride solution* and dilute with *Diluent* to volume. The concentration of this solution is 4.6 µg/mL of Potassium Sorbate.**Instrumental conditions**(See [Atomic Absorption Spectroscopy \(852\)](#).)**Mode:** Atomic absorption spectrophotometry**Analytical wavelength:** 766.5 nm (potassium emission line)**Lamp:** Potassium hollow-cathode**Flame:** Air–acetylene**Standard curve****Samples:** *Standard solutions***Plot:** Absorbance values versus their corresponding concentrations (µg/mL) of potassium. The correlation coefficient is NLT 0.995.**Analysis****Sample:** *Sample solution*From the *Standard curve*, determine the concentration of potassium in the *Sample solution*.

Calculate the percentage of potassium in the portion of Potassium Sorbate taken:

$$\text{Result} = (C_s/C_u) \times 100$$

$C_s$  = concentration of potassium in the *Sample solution* from the *Standard curve* (µg/mL) $C_u$  = concentration of Potassium Sorbate in the *Sample solution* (µg/mL)**Acceptance criteria:** 24.5%–27.6%▲ (NF 1-May-2020)

## IMPURITIES

**Add the following:**

### ▲• Limit of Aldehyde

**Decolorized fuchsin solution:** Dissolve 0.1 g of [basic fuchsin](#) in 60 mL of water. Add a solution containing 1 g of [anhydrous sodium sulfite](#) in 10 mL of water. Slowly and with continuous shaking add 2 mL of [hydrochloric acid](#). Dilute with water to 100 mL. Allow to stand protected from light for at least 12 h, decolorize with [activated charcoal](#), and filter. If the solution becomes cloudy, filter before use. If on standing the solution becomes violet, decolorize again by adding [activated charcoal](#).

**Test for sensitivity:** To 1.0 mL of *Decolorized fuchsin solution* add 1.0 mL of water and 0.1 mL of [alcohol, aldehyde-free](#). Add 0.2 mL of a solution containing 0.1 g/L of formaldehyde ( $\text{CH}_2\text{O}$ ). A pale-pink color develops within 5 min.

**Storage:** Protected from light

**Acetaldehyde standard solution:** 100 µg/mL of acetaldehyde ( $\text{C}_2\text{H}_4\text{O}$ ). Dissolve 1.0 g of [acetaldehyde](#) in [2-propanol](#) and dilute with the same solvent to 100.0 mL. Dilute 5.0 mL of the solution with [2-propanol](#) to 500.0 mL. Prepare immediately before use.

**Standard solution:** Add 1 mL of *Decolorized fuchsin solution* to a mixture of 1.5 mL of *Acetaldehyde standard solution*, 4 mL of [2-propanol](#), and 4.5 mL of water.

**Sample solution:** Dissolve 1.0 g of the sample in a mixture of 30 mL of water and 50 mL of [2-propanol](#), adjust with 1 N hydrochloric acid to a pH of 4, and dilute with water to 100 mL.

**Analysis:** To 10 mL of the *Sample solution* add 1 mL of *Decolorized fuchsin solution* and allow to stand for 30 min. Any color in the solution is not more intense than that in the *Standard solution* prepared at the same time.

**Acceptance criteria:** NMT 0.15%, as acetaldehyde ( $\text{C}_2\text{H}_4\text{O}$ )▲ (NF 1-May-2020)

## SPECIFIC TESTS

### • ACIDITY OR ALKALINITY

**Sample solution:** 1.1 g of Potassium Sorbate in 20 mL of water

**Analysis:** Add phenolphthalein TS to the *Sample solution*.

**Acceptance criteria:** If the solution is colorless, titrate with 0.10 N sodium hydroxide to a pink color that persists for 15 s: NMT 1.1 mL of 0.10 N sodium hydroxide is required. If the solution is pink in color, titrate with 0.10 N hydrochloric acid to discharge the pink color: NMT 0.80 mL of 0.10 N hydrochloric acid is required.

### • LOSS ON DRYING (731)

**Analysis:** Dry at 105° for 3 h.

**Acceptance criteria:** NMT 1.0%

## ADDITIONAL REQUIREMENTS

### • PACKAGING AND STORAGE:

Preserve in tight containers, protected from light, and avoid exposure to excessive heat.

**Add the following:**

### ▲. [USP REFERENCE STANDARDS \(11\)](#)

[USP Potassium Sorbate RS](#)▲ (NF 1-May-2020)

<sup>1</sup> UV irradiation conditions of wavelengths of 254, 300, and 365 nm at 18 Watts for 2 h have been used for the solution. Other equivalent UV conditions are also suitable as long as ~1% degradation of potassium sorbate (based on area%) can be achieved after the irradiation. Quartz glassware is preferred.

**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

| Topic/Question    | Contact                                       | Expert Committee         |
|-------------------|-----------------------------------------------|--------------------------|
| POTASSIUM SORBATE | <a href="#">Documentary Standards Support</a> | SE2020 Simple Excipients |

| Topic/Question             | Contact                                                                     | Expert Committee         |
|----------------------------|-----------------------------------------------------------------------------|--------------------------|
| REFERENCE STANDARD SUPPORT | RS Technical Services<br><a href="mailto:RSTECH@usp.org">RSTECH@usp.org</a> | SE2020 Simple Excipients |

**Chromatographic Database Information:** [Chromatographic Database](#)

**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 44(2)

**Current DocID:** [GUID-C8AFACAF-0D82-45A5-BC8D-58739745E9CE\\_4\\_en-US](#)

**DOI:** [https://doi.org/10.31003/USPNF\\_M68040\\_04\\_01](https://doi.org/10.31003/USPNF_M68040_04_01)

**DOI ref:** [eh3w2](#)

OFFICIAL