

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-Sep-2024
 Document Type: USP Monographs
 DocId: GUID-748E11DE-5980-4B9B-8C19-909302297BF8_7_en-US
 DOI: https://doi.org/10.31003/USPNF_M10962_07_01
 DOI Ref: gt9c5

© 2025 USPC
 Do not distribute

Potassium Phosphates Compounded Injection

DEFINITION

Potassium Phosphates Compounded Injection contains NLT 95.0% and NMT 105.0% of the labeled amount of monobasic potassium phosphate (KH_2PO_4) and dibasic potassium phosphate (K_2HPO_4). It contains no bacteriostat or other preservative.

Prepare Potassium Phosphates Compounded Injection containing 3 mM/mL of phosphorus and 4.4 mEq/mL of potassium as follows (see [Pharmaceutical Compounding—Sterile Preparations \(797\)](#)).

Monobasic Potassium Phosphate (anhydrous)	22.4 g
Dibasic Potassium Phosphate (anhydrous)	23.6 g
Sterile Water for Injection, a sufficient quantity to make	100 mL

Dissolve the *Dibasic Potassium Phosphate (anhydrous)* in 50 mL of *Sterile Water for Injection*. Dissolve the *Monobasic Potassium Phosphate (anhydrous)* in the solution and then bring to final volume with *Sterile Water for Injection*. [NOTE—May need to heat to 77° to fully dissolve. If heating is required, allow to reach room temperature prior to passing through a filter.] Pass through a filter of 1.2-μm pore size to remove particulate matter and sterilize by autoclave.

ASSAY

Change to read:

• PROCEDURE FOR POTASSIUM

Mobile phase: 8 mM methanesulfonic acid

Standard solution: 0.050 mg/mL of potassium prepared with [USP Dibasic Potassium Phosphate RS](#) and water

Sample solution: Transfer 74 μL of Injection to a 250-mL volumetric flask and dilute with water to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Conductivity

Column: ▲4-mm▲ (ERR 1-Sep-2024) × 25-cm; packing L97

Column temperature: 30°

Flow rate: 1.0 mL/min

Injection volume: 10 μL

System suitability

Sample: Standard solution

[NOTE—The retention time for potassium is about 5.1 min.]

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0% for replicate injections

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of potassium (K) in the portion of Injection taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of potassium from the *Sample solution*

r_s = peak response of potassium from the *Standard solution*

C_s = concentration of potassium in the *Standard solution* (mg/mL)

C_u = nominal concentration of potassium in the *Sample solution* (mg/mL)

Acceptance criteria: 95.0%–105.0%

Change to read:

- **PROCEDURE FOR PHOSPHATE**

Mobile phase: 40 mM sodium hydroxide

Standard solution: 0.230 mg/mL of phosphate prepared from [USP Dibasic Potassium Phosphate RS](#) in water

Sample solution: Transfer 0.2 mL of Injection to a 250-mL volumetric flask and dilute with water to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Conductivity

Column: ▲4-mm▲ (ERR 1-Sep-2024) × 25-cm; packing L103

Column temperature: 30°

Flow rate: 1.0 mL/min

Injection volume: 10 µL

System suitability

Sample: *Standard solution*

[NOTE—The retention time for phosphorus is about 5.4 min.]

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0% for replicate injections

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of phosphate (PO_4) in the portion of Injection taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of phosphate from the *Sample solution*

r_s = peak response of phosphate from the *Standard solution*

C_s = concentration of phosphate in the *Standard solution* (mg/mL)

C_u = nominal concentration of phosphate in the *Sample solution* (mg/mL)

Acceptance criteria: 95.0%–105.0%

SPECIFIC TESTS

- [pH \(791\)](#): 6.3–7.3

- [STERILITY TESTS \(71\)](#): Meets the requirements

- [BACTERIAL ENDOTOXINS TEST \(85\)](#): NMT 1.10 USP Endotoxin Units/mg of potassium phosphates

- [PARTICULATE MATTER IN INJECTIONS \(788\)](#): Meets the requirements

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Package in single-dose glass containers. Store at controlled room temperature.

- **Beyond-Use Date:** In the absence of performing and completing a sterility and endotoxin test, the storage conditions in [Pharmaceutical Compounding – Sterile Preparations \(797\), 14.3 Establishing a BUD for a CSP](#) apply. After successful completion of sterility and endotoxin testing, NMT 120 days after the date on which it was compounded when stored at controlled room temperature.

- **LABELING:** Label it to state the *Beyond-Use Date*. The label states the potassium content in terms of milliequivalents in a given volume, and states also the elemental phosphorus content in terms of millimoles in a given volume. Label it not for direct injection.

- [USP REFERENCE STANDARDS \(11\)](#).

[USP Dibasic Potassium Phosphate RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
POTASSIUM PHOSPHATES COMPOUNDED INJECTION	Brian Serumaga Science Program Manager	CMP2020 Compounding 2020
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	CMP2020 Compounding 2020

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 42(5)

Current DocID: GUID-748E11DE-5980-4B9B-8C19-909302297BF8_7_en-US

DOI: https://doi.org/10.31003/USPNF_M10962_07_01

DOI ref: [gt9c5](#)

OFFICIAL