

Status: Currently Official on 16-Feb-2025

Official Date: Official as of 01-Feb-2023

Document Type: USP Monographs

DocId: GUID-5B4440CE-7AB6-4D71-9A60-E982622592B9_2_en-US

DOI: https://doi.org/10.31003/USPNF_M67570_02_01

DOI Ref: qc9h

© 2025 USPC

Do not distribute

Potassium Gluconate Oral Solution

DEFINITION

Potassium Gluconate Oral Solution contains NLT 95.0% and NMT 105.0% of the labeled amount of potassium gluconate ($C_6H_{11}KO_7$).

IDENTIFICATION

- **A.** Oral Solution imparts a violet color to a nonluminous flame. The presence of small quantities of sodium can mask the color unless the yellow color produced by sodium is screened out by viewing through a blue filter that blocks emission at 589 nm (sodium), but is transparent to emission at 404 nm (potassium). [NOTE—Traditionally, cobalt glass has been used, but other suitable filters are commercially available.]
- **B.**

Analysis: Evaporate 5 mL on a steam bath to dryness.

Acceptance criteria: A mineral oil dispersion of the residue exhibits an IR absorption maximum in the spectral region of 6.2–6.25 μm (carboxylic acid salt).

ASSAY

• PROCEDURE

Standard stock solution: Transfer 190.7 mg of [potassium chloride](#), previously dried at 105° for 2 h, to a 1000-mL volumetric flask, add sufficient water to dissolve, and dilute with water to volume. Transfer 100.0 mL of this solution to a 1000-mL volumetric flask, and dilute with water to volume. This solution contains 10 $\mu\text{g}/\text{mL}$ of potassium (equivalent to 19.07 $\mu\text{g}/\text{mL}$ of potassium chloride).

Standard solutions: Transfer 10.0, 15.0, and 20.0 mL of *Standard stock solution* to separate 100-mL volumetric flasks. To each flask add 2.0 mL of a 200-mg/mL sodium chloride solution and 1.0 mL of hydrochloric acid. Dilute with water to volume, and mix. The *Standard solutions* contain 1.0, 1.5, and 2.0 $\mu\text{g}/\text{mL}$ of potassium, respectively.

Sample solution: Transfer an accurately measured volume of Oral Solution, equivalent to 1.8 g of potassium gluconate, to a 1000-mL volumetric flask, dilute with water to volume, and mix. Transfer 10.0 mL of the solution to a 100-mL volumetric flask, dilute with water to volume, and mix. Transfer 5.0 mL of the resulting solution to a 100-mL volumetric flask, add 2.0 mL of sodium chloride solution (1 in 5) and 1.0 mL of hydrochloric acid, dilute with water to volume, and mix.

Blank: Water

Instrumental conditions

(See [Atomic Absorption Spectroscopy \(852\)](#).)

Mode: Atomic absorption spectrophotometry

Analytical wavelength: 766.5 nm

Lamp: Potassium hollow-cathode

Flame: Air–acetylene

Analysis

Samples: *Standard solutions* and *Sample solution*

Determine the absorbances of the *Standard solutions* and the *Sample solution*. Plot the absorbances of the *Standard solutions* versus their concentrations, in $\mu\text{g}/\text{mL}$, of potassium, and draw the straight line best fitting the three plotted points. From the graph so obtained, determine the concentration, C_K , in $\mu\text{g}/\text{mL}$, of potassium in the *Sample solution*.

Calculate the percentage of the labeled amount of potassium gluconate ($C_6H_{11}KO_7$) in the portion of Oral Solution taken:

$$\text{Result} = (C_K/C_U) \times (M_r/A_r) \times 100$$

C_K = determined concentration of potassium in the *Sample solution*, ($\mu\text{g}/\text{mL}$)

C_U = nominal concentration of potassium gluconate in the *Sample solution* ($\mu\text{g}/\text{mL}$)

M_r = molecular weight of potassium gluconate, 234.25

A_r = atomic weight of potassium, 39.10**Acceptance criteria:** 95.0%–105.0%**Change to read:****SPECIFIC TESTS**

- **ALCOHOL DETERMINATION (611), ▲ Method I ▲ (ERR-1-Feb-2023) – Distillation Method:** 4.5%–5.5% of alcohol (C_2H_5OH)

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
POTASSIUM GLUCONATE ORAL SOLUTION	Natalia Davydova Scientific Liaison	NBDS2020 Non-botanical Dietary Supplements
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	NBDS2020 Non-botanical Dietary Supplements

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 41(6)

Current DocID: GUID-5B4440CE-7AB6-4D71-9A60-E982622592B9_2_en-US**DOI: https://doi.org/10.31003/USPNF_M67570_02_01****DOI ref: [gci9h](#)**