

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Aug-2021
Document Type: USP Monographs
DocId: GUID-0565F37E-D0CC-4119-913E-743697D5CF0E_8_en-US
DOI: https://doi.org/10.31003/USPNF_M67390_08_01
DOI Ref: w62p5

© 2025 USPC
Do not distribute

Potassium Chloride Extended-Release Tablets

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click www.uspnf.com/rb-potassium-chloride-ert-20210730.

DEFINITION

Potassium Chloride Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of potassium chloride (KCl).

IDENTIFICATION

• A. [IDENTIFICATION TESTS—GENERAL \(191\), Chemical Identification Tests, Potassium](#)

Sample solution: A portion of the filtrate, obtained as directed for the designated *Sample stock solution* in the Assay

Acceptance criteria: Meet the requirements

• B. [IDENTIFICATION TESTS—GENERAL \(191\), Chemical Identification Tests, Chloride](#)

Sample solution: A portion of the filtrate, obtained as directed for the designated *Sample stock solution* in the Assay

Acceptance criteria: Meet the requirements

ASSAY

• PROCEDURE

[NOTE—If necessary, first score nonsugar-coated Tablets. Retain a portion of the filtrate of either *Sample stock solution 1* or *Sample stock solution 2* for use in *Identification A* and *B*.]

Standard stock solution: 19.07 µg/mL of [potassium chloride](#), previously dried at 105° for 2 h, in [water](#). This solution contains 10 µg/mL of potassium.

Standard solutions: To separate 100-mL volumetric flasks transfer 10.0, 15.0, and 20.0 mL, respectively, of *Standard stock solution*. To each flask add 2.0 mL of [sodium chloride](#) solution (1 in 5) and 1.0 mL of [hydrochloric acid](#), and dilute with [water](#) to volume. The *Standard solutions* contain 1.0, 1.5, and 2.0 µg/mL of potassium, respectively.

Sample preparation 1

Sample stock solution 1: Nominally 0.06 mg/mL of potassium chloride prepared as follows. Place NLT 20 Tablets in a suitable container with 400 mL of [water](#), heat to boiling, and boil for 20 min. Allow to cool, transfer the solution to a 1000-mL volumetric flask, and dilute with [water](#) to volume. Filter and discard the first 20 mL of the filtrate. Transfer a measured volume of the subsequent filtrate, equivalent to 60 mg of potassium chloride, to a 1000-mL volumetric flask, and dilute with [water](#) to volume.

Sample solution 1: Nominally 3 µg/mL of potassium chloride prepared as follows. Transfer 5.0 mL of *Sample stock solution 1* to a 100-mL volumetric flask, add 2.0 mL of [sodium chloride](#) solution (1 in 5) and 1.0 mL of [hydrochloric acid](#), and dilute with [water](#) to volume.

Sample preparation 2 (for formulations containing crystals coated with hydrophobic polymers)

Sample stock solution 2: Nominally 0.06 mg/mL of potassium chloride prepared as follows. Place NLT 20 Tablets in a 2000-mL volumetric flask. Add 1200 mL of a mixture of [acetonitrile](#) and [water](#) (1:1), and shake by mechanical means, or stir using a magnetic bar for 90 min. Dilute with the mixture of [acetonitrile](#) and [water](#) (1:1) to volume. Allow to stand for 90 min. Pass through a filter of 0.2-µm pore size. Transfer a measured volume of the filtrate, and quantitatively dilute with water to obtain a solution with a concentration of 0.06 mg/mL. [NOTE—Alternatively, *Sample stock solution 2* can be prepared by the following procedure. Nominally 0.15 mg/mL of potassium chloride from NLT 20 finely powdered Tablets, prepared as follows. Transfer an appropriate amount of the powder, equivalent to about 5–6 Tablets, to a suitable volumetric flask, add 10% of the final flask volume of [acetone](#), and sonicate for 45 min with intermittent shaking. Add 80% of the final flask volume of [water](#) and sonicate for 45 min with intermittent shaking. Cool to room temperature and dilute with [water](#) to volume. Centrifuge a portion of the solution at 5000 rpm for 10 min. Transfer an appropriate amount of the supernatant to a 100-mL volumetric flask and dilute with [water](#) to volume to obtain a solution with a concentration of 0.15 mg/mL.]

Sample solution 2: Nominally 3 µg/mL of potassium chloride prepared as follows. Transfer an appropriate amount of *Sample stock solution 2* to a 100-mL volumetric flask, add 2.0 mL of [sodium chloride](#) solution (1 in 5) and 1.0 mL of [hydrochloric acid](#), and dilute with water to volume.

Instrumental conditions

(See [Atomic Absorption Spectroscopy \(852\)](#).)

Mode: Atomic absorption spectrophotometry**Analytical wavelength:** Potassium emission line at 766.5 nm**Lamp:** Potassium hollow-cathode**Flame:** Air–acetylene**Blank:** Water**Analysis****Samples:** Standard solutions, Sample solution 1 or Sample solution 2, and Blank

Plot the absorbances of the Standard solutions versus the concentration of potassium, in $\mu\text{g/mL}$, and draw the straight line best fitting the three plotted points. From the graph, determine the concentration of potassium in the Sample solution ($\mu\text{g/mL}$).

Calculate the percentage of the labeled amount of potassium chloride (KCl) in each Tablet taken:

$$\text{Result} = (C/C_U) \times (M_r/A_r) \times 100$$

C = concentration of potassium in the Sample solution as determined in this test ($\mu\text{g/mL}$)

C_U = nominal concentration of potassium chloride in the Sample solution ($\mu\text{g/mL}$)

M_r = molecular weight of potassium chloride, 74.55

A_r = atomic weight of potassium, 39.10

Acceptance criteria: 90.0%–110.0%**PERFORMANCE TESTS****Change to read:**

- [Dissolution \(711\)](#).

Test 1**Medium:** [Water](#); 900 mL**Apparatus 2:** 50 rpm**Time:** 2 h

Standard stock solution: 19.07 $\mu\text{g/mL}$ of potassium chloride, previously dried at 105° for 2 h, in [water](#). This solution contains 10 $\mu\text{g/mL}$ of potassium.

Standard solutions: To separate 100-mL volumetric flasks transfer 10.0, 15.0, and 20.0 mL, respectively, of Standard stock solution. To each flask add 2.0 mL of [sodium chloride](#) solution (1 in 5) and 1.0 mL of [hydrochloric acid](#), and dilute with [water](#) to volume. The Standard solutions contain, respectively, 1.0, 1.5, and 2.0 $\mu\text{g/mL}$ of potassium.

Sample stock solution: Filter the solution under test, and dilute with Medium to obtain a solution containing nominally 60 $\mu\text{g/mL}$ of potassium chloride.

Sample solution: Transfer 5.0 mL of the Sample stock solution to a 100-mL volumetric flask. Add 2.0 mL of [sodium chloride](#) solution (1 in 5) and 1.0 mL of [hydrochloric acid](#), and dilute with [water](#) to volume.

Instrumental conditions

(See [Atomic Absorption Spectroscopy \(852\)](#).)

Mode: Atomic absorption spectrophotometry**Analytical wavelength:** Potassium emission line at 766.5 nm**Lamp:** Potassium hollow-cathode**Flame:** Air–acetylene**Blank:** [Water](#)**Analysis****Samples:** Standard solutions, Sample solution, and Blank

Plot the absorbances of the Standard solutions versus the concentration of potassium, in $\mu\text{g/mL}$, and draw the straight line best fitting the three plotted points. From the graph, determine the concentration of potassium in the Sample solution ($\mu\text{g/mL}$).

Calculate the percentage of the labeled amount of potassium chloride (KCl) dissolved:

$$\text{Result} = [C \times D \times (V/L)] \times (M_r/A_r) \times 100$$

C = concentration of potassium in the Sample solution as determined in this test ($\mu\text{g/mL}$)

D = dilution factor of the Sample solution

V = volume of Medium, 900 mL

L = labeled amount of potassium chloride ($\mu\text{g}/\text{Tablet}$)

M_r = molecular weight of potassium chloride, 74.55

A_r = atomic weight of potassium, 39.10

Tolerances: NMT 35% (Q) of the labeled amount of potassium chloride (KCl) is dissolved in 2 h. The requirements are met if the quantities dissolved from the Tablets tested conform to [Table 1](#) instead of the table shown in [Dissolution \(711\)](#).

Table 1

Stage	Number Tested	Acceptance Criteria
S_1	6	Each unit is within the range $Q \pm 30\%$.
S_2	6	Average of 12 units ($S_1 + S_2$) is within the range between $Q - 30\%$ and $Q + 35\%$, and no unit is outside the range $Q \pm 40\%$.
S_3	12	Average of 24 units ($S_1 + S_2 + S_3$) is within the range between $Q - 30\%$ and $Q + 35\%$, and NMT 2 units are outside the range $Q \pm 40\%$.

Test 2: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 2*.

Standard stock solution and Standard solutions: Prepare as directed in *Test 1*.

Medium: [Water](#); 900 mL

Apparatus 2: 50 rpm

Times: 1, 2, 4, and 8 h

Sample stock solution: Transfer 4.0 mL of the solution under test into either a 50-mL volumetric flask (for 750-mg Tablet) or a 100-mL volumetric flask (for 1500-mg Tablet), dilute with [water](#) to volume, and filter.

Sample solution: Transfer 4.0 mL of the *Sample stock solution* to a 100-mL volumetric flask. Add 2.0 mL of [sodium chloride](#) solution (1 in 5) and 1.0 mL of [hydrochloric acid](#), and dilute with [water](#) to volume.

Blank solution: To a 100-mL volumetric flask, add 2.0 mL of [sodium chloride](#) solution (1 in 5) and 1.0 mL of [hydrochloric acid](#), and dilute with [water](#) to volume.

Instrumental conditions: Proceed as directed in *Test 1*, except do not use the *Blank*.

System suitability

Samples: *Standard solutions*

Suitability requirements

Linearity: Correlation coefficient NLT 0.99

Relative standard deviation: NMT 5.0% from 5 replicate analyses of the 1.5- $\mu\text{g}/\text{mL}$ *Standard solution*

Analysis

Samples: 1.5- $\mu\text{g}/\text{mL}$ *Standard solution*, *Sample solution*, and *Blank solution*

Calculate the percentage of the labeled amount of potassium chloride (KCl) dissolved:

$$\text{Result}_i = [(A_u/A_s) \times C_s \times D \times (V/L)] \times (M_r/A_r) \times 100$$

A_u = absorbance of potassium in the *Sample solution*

A_s = absorbance of potassium in the *Standard solution*

C_s = concentration of potassium in the *Standard solution* ($\mu\text{g}/\text{mL}$)

D = dilution factor of the *Sample solution*

V = volume of *Medium*, 900 mL

L = labeled amount of potassium chloride ($\mu\text{g}/\text{Tablet}$)

M_r = molecular weight of potassium chloride, 74.55 A_r = atomic weight of potassium, 39.10**Tolerances:** See [Table 2](#).**Table 2**

Time Point (i)	Time (h)	Amount Dissolved (%)	
		750 mg/Tablet	1500 mg/Tablet
1	1	10–30	5–25
2	2	30–50	25–45
3	4	60–80	55–75
4	8	NLT 80	NLT 85

The percentages of the labeled amount of potassium chloride (KCl), dissolved at the times specified, conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Test 3: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 3*.

Medium: [Water](#); 900 mL

Apparatus 2: 50 rpm

Times: 0.5, 2, 4, and 10 h

Mobile phase: 20 mM [methanesulfonic acid](#) in [water](#)

Standard solution: ($L/900$) mg/mL of [USP Potassium Chloride RS](#) in [water](#), where L is the label claim of potassium chloride in mg/Tablet, prepared as follows. Transfer an appropriate quantity of [USP Potassium Chloride RS](#) to a suitable volumetric flask. Add 50% of the flask volume of [water](#) and sonicate to dissolve. Dilute with [water](#) to volume.

Sample solution: Pass a portion of the solution under test through a filter with a suitable pore size and use the filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Conductivity with suppression

Column: 4.0-mm \times 25-cm; 8.5- μ m packing [L106¹](#)

Column temperature: 30°

Flow rate: 1.0 mL/min

Injection volume: 5 μ L

Run time: NLT 2 times the retention time of potassium

System suitability

Sample: Standard solution

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of potassium chloride (KCl) dissolved at each time point (i):

$$\text{Result}_i = (r_u/r_s) \times C_s \times V \times (1/L) \times 100$$

r_u = peak response of potassium from the *Sample solution*

r_s = peak response of potassium from the *Standard solution*

C_s = concentration of [USP Potassium Chloride RS](#) in the *Standard solution* (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim of potassium chloride (mg/Tablet)

Tolerances: See [Table 3](#).**Table 3**

Time Point (i)	Time (h)	Amount Dissolved (%)
1	0.5	15–35
2	2	40–60
3	4	60–80
4	10	NLT 80

The percentages of the labeled amount of potassium chloride (KCl), dissolved at the times specified, conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Test 4: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 4*.

Standard stock solution and Instrumental conditions: Proceed as directed in *Test 1*, except for the *Blank*.

Medium: [Water](#); 900 mL, degassed

Apparatus 2: 50 rpm

Times: 2, 4, and 8 h

Sodium chloride solution: 0.2 g/mL of [sodium chloride](#) in [water](#)

Hydrochloric acid solution: Dilute 100 mL of [hydrochloric acid](#) with 300 mL of [water](#).

Standard solutions: To separate 100-mL volumetric flasks transfer 10.0, 15.0, and 20.0 mL, respectively, of *Standard stock solution*. To each flask add 2.0 mL of *Sodium chloride solution* and 4.0 mL of *Hydrochloric acid solution*, and dilute with [water](#) to volume. The *Standard solutions* contain 1.0, 1.5, and 2.0 µg/mL of potassium, respectively.

Sample stock solution: Pass a portion of the solution under test through a filter with a suitable pore size and use the filtrate.

Sample solution: Transfer 1.0 mL of the *Sample stock solution* to a suitable volumetric flask and dilute with [water](#) if necessary. To the final dilution, add 2.0% flask volume of *Sodium chloride solution* and 4.0% flask volume of *Hydrochloric acid solution*, and dilute with [water](#) to volume.

Blank: To a suitable volumetric flask, add 2.0% flask volume of *Sodium chloride solution* and 4.0% flask volume of *Hydrochloric acid solution*, and dilute with [water](#) to volume.

System suitability

Samples: *Standard solutions*

Suitability requirements

Linearity: Correlation coefficient NLT 0.999

Relative standard deviation: NMT 1.5% from the absorbance responses of 5 replicate analyses of each *Standard solution*

Analysis: Proceed as directed in *Test 1*.

Tolerances: See [Table 4](#).

Table 4

Time Point (i)	Time (h)	Amount Dissolved (%)
1	2	22–42
2	4	44–64
3	8	NLT 80

The percentages of the labeled amount of potassium chloride (KCl), dissolved at the times specified, conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Test 5: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 5*.

Medium: Water, 900 mL**Apparatus 2:** 50 rpm**Times:** 1, 2, and 8 h**Dilute glacial acetic acid solution:** Dilute 25 mL of glacial acetic acid with 75 mL of water.**Saturated potassium sulfate solution:** Dissolve sufficient quantities of potassium sulfate in a suitable volume of water until undissolved particles appear in the solution.**0.01 N silver nitrate solution:** Transfer 10 mL of 0.1 N silver nitrate VS to a 100-mL volumetric flask and dilute with water to volume.**Standard solution:** (L/900) mg/mL of potassium chloride, previously dried at 105° for 2 h, in water, where *L* is the label claim in mg/Tablet. Pass the solution through a suitable filter.**Sample solution:** Withdraw 10 mL of the solution under test at the specified time points and pass a suitable portion of the solution through a suitable filter. Replace each of the volumes withdrawn with an equal volume of the *Medium*.**Blank:** *Medium***Titrimetric system**(See Titrimetry (541).)**Mode:** Direct titration**Titrant:** 0.01 N silver nitrate solution**Endpoint detection:** Potentiometric**System suitability****Sample:** Standard solutionTransfer 5 mL of *Standard solution* into a titration vessel and add 25 mL of water, 5 mL of *Dilute glacial acetic acid solution*, and 0.1 mL of *Saturated potassium sulfate solution* to the vessel. Titrate with *Titrant* and determine the endpoint potentiometrically.**Suitability requirements****Relative standard deviation:** NMT 2.0% from 5 replicate analyses**Analysis****Samples:** *Sample solution* and *Blank*Transfer 5 mL of each solution into separate titration vessels and add 25 mL of water, 5 mL of *Dilute glacial acetic acid solution*, and 0.1 mL of *Saturated potassium sulfate solution* to each vessel. Titrate with *Titrant* and determine the endpoint potentiometrically.Calculate the concentration (C_i) of potassium chloride (KCl) in the sample withdrawn from the vessel at each time point (*i*):

$$\text{Result}_i = (V_u - V_b) \times N \times F \times (1/V_s)$$

 V_u = volume of *Titrant* used to titrate the *Sample solution* V_b = volume of *Titrant* used to titrate the *Blank* N = actual normality of *Titrant* (mEq/mL) F = equivalency factor, 74.55 mg/mEq V_s = volume of *Sample solution* used in the test, 5 mLCalculate the percentage of the labeled amount of potassium chloride (KCl) dissolved at each time point (*i*):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_w)] \times (1/L) \times 100$$

$$\text{Result}_3 = [(C_3 \times V) + (C_2 + C_1) \times V_w] \times (1/L) \times 100$$

 C_i = concentration of potassium chloride in the portion of sample withdrawn at the specific time point V = volume of *Medium*, 900 mL L = labeled amount of potassium chloride (mg/Tablet) V_w = volume of *Sample solution* withdrawn from vessel, 10 mL**Tolerances:** See Table 5.**Table 5**

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	22-42
2	2	38-58
3	8	NLT 80

The percentages of the labeled amount of potassium chloride (KCl), dissolved at the times specified, conform to [Dissolution \(711\), Acceptance Table 2](#).

Test 6: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 6*.

Use [water](#) with a resistivity of NLT 18 megohm-cm to prepare the solutions.

Medium: [Water](#); 900 mL

Apparatus 2: 50 rpm

Times: 1, 2, and 8 h

0.1 M sulfuric acid solution: Transfer 10 mL of [1 M sulfuric acid TS](#) into a 100-mL volumetric flask and dilute with [water](#) to volume.

Mobile phase: 0.01 M sulfuric acid in [water](#), from **0.1 M sulfuric acid solution**

Standard solution: 0.83 mg/mL of [USP Potassium Chloride RS](#) in [water](#)

Sample solution: Pass a portion of the solution under test through a filter with a suitable pore size and use the filtrate. Discard the first 2 mL of the filtrate.

Blank solution: Medium

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Conductivity with suppression

Columns

Guard: 4.0-mm × 5-cm; 8.5-μm packing [L106¹](#)

Analytical: 4.0-mm × 25-cm; 8.5-μm packing [L106¹](#)

Temperatures

Column: 30°

Cell: 35°

Flow rate: 1.0 mL/min

Injection volume: 10 μL

Run time: NLT 2 times the retention time of potassium

System suitability

Sample: Standard solution

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of potassium chloride (KCl) in the sample withdrawn from the vessel at each time point (i):

$$C_i = (r_u/r_s) \times C_s$$

r_u = peak response of potassium from the *Sample solution*

r_s = peak response of potassium from the *Standard solution*

C_s = concentration of [USP Potassium Chloride RS](#) in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of potassium chloride (KCl) dissolved at the specified time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_s)] + (C_1 \times V_s)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{C_3 \times [(V - (2 \times V_S))] + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of potassium chloride in the portion of the sample withdrawn at the specified time point (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_S = volume of *Sample solution* withdrawn at each time point (mL)

Tolerances: See [Table 6](#).

Table 6

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	23–43
2	2	40–60
3	8	NLT 80

The percentages of the labeled amount of potassium chloride (KCl), dissolved at the times specified, conform to [Dissolution \(711\)](#).

[Acceptance Table 2](#).

Test 7: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 7*.

Apparatus 2, Standard stock solution, Standard solutions, Sample solution, and Instrumental conditions: Proceed as directed in *Test 1*.

Medium: [Water](#); 900 mL, degassed

Times: 1, 3, and 8 h

Sample stock solution: At each specified time point, withdraw 15 mL of the solution under test and pass a portion of the solution through a filter with a suitable pore size, discard the first 2 mL, and use the filtrate. Further dilute the filtrate with [water](#) as appropriate, ensuring the nominal concentration of *Sample solution* is within the linearity range of the *Standard solutions*. [NOTE—Do not replace the *Medium* at the time of sampling.]

System suitability

Samples: *Standard solutions*

Suitability requirement

Linearity: Correlation coefficient NLT 0.995

Recovery: 90%–110%, back calculated from the 1.5 µg/mL *Standard solution*

Analysis: Proceed as directed in *Test 1*.

Plot the absorbances of the *Standard solutions* versus the concentration of potassium, in µg/mL, and draw the straight line best fitting the three plotted points. From the graph, determine the concentration of potassium in the *Sample solution* (µg/mL).

Calculate the percentage of the labeled amount of potassium chloride (KCl) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times D_1 \times V \times (1/L) \times (M_r/A_r) \times 100$$

$$\text{Result}_2 = \{[C_2 \times D_2 \times (V - V_S)] + (C_1 \times D_1 \times V_S)\} \times (1/L) \times (M_r/A_r) \times 100$$

$$\text{Result}_3 = \{(C_3 \times D_3 \times [V - (2 \times V_S)]) + \{[(C_2 \times D_2) + (C_1 \times D_1)] \times V_S\}\} \times (1/L) \times (M_r/A_r) \times 100$$

C_i = concentration of potassium in the *Sample solution* at the specified time point (µg/mL)

D_i = dilution factor of the *Sample solution* at the specified time point

V = volume of *Medium*, 900 mL

L = labeled amount of potassium chloride (µg/Tablet)

M_r = molecular weight of potassium chloride, 74.55

A_r = atomic weight of potassium, 39.10

V_s = volume of *Sample solution* withdrawn at each time point, 15 mL**Tolerances:** See [Table 7](#).**Table 7**

Time Point (<i>i</i>)	Time (h)	Amount Dissolved (%)
1	1	NMT 22
2	3	37–57
3	8	NLT 80

The percentages of the labeled amount of potassium chloride (KCl), dissolved at the times specified, conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).

▲ **Test 8:** If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 8*.

Medium: [Water](#); 900 mL, deaerated

Apparatus 2: 50 rpm

Times: 1, 2, and 6 h

Mobile phase: 0.1 mM [edetic acid](#) in 0.02% (v/v) nitric acid solution prepared as follows. Add 29 mg of [edetic acid](#) and 200 µL of [nitric acid](#) in 1 L of [water](#).

Standard solution: 0.8 mg/mL of [USP Potassium Chloride RS](#) in [water](#)

Sample solution

For Tablets labeled to contain 750 mg: Pass a portion of the solution under test through a suitable filter of 10-µm pore size at the times specified.

For Tablets labeled to contain 1500 mg: Pass a portion of the solution under test through a suitable filter of 10-µm pore size at the times specified. Dilute a portion of the filtrate with an equal volume of *Medium*.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Conductivity

Column: 3.9-mm × 15-cm; 5-µm packing [L55](#)

Column temperature: 30°

Flow rate: 1.2 mL/min

Injection volume: 5 µL

Run time: NLT 2 times the retention time of potassium

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration (C_i) of potassium chloride (KCl) in the sample withdrawn from the vessel at each time point (*i*):

$$C_i = (r_u/r_s) \times C_s \times D$$

r_u = peak response of potassium from the *Sample solution*

r_s = peak response of potassium from the *Standard solution*

C_s = concentration of [USP Potassium Chloride RS](#) in the *Standard solution* (mg/mL)

D = dilution factor of the *Sample solution*, if applicable

Calculate the percentage of the labeled amount of potassium chloride (KCl) dissolved at the specified time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_s)] + (C_1 \times V_s)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{C_3 \times [(V - (2 \times V_s)] + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

 C_i = concentration of potassium chloride in the portion of the sample withdrawn at the specified time point (mg/mL) V = volume of *Medium*, 900 mL L = label claim (mg/Tablet) V_s = volume of *Sample solution* withdrawn at each time point (mL)**Tolerances:** See [Table 8](#).**Table 8**

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	12–32
2	2	34–54
3	6	NLT 80

The percentages of the labeled amount of potassium chloride (KCl), dissolved at the times specified, conform to [Dissolution \(711\)](#),[Acceptance Table 2](#)▲ (RB 1-Aug-2021)

- **UNIFORMITY OF DOSAGE UNITS (905):** Meet the requirements

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers, and store at a temperature not exceeding 30°.
- **LABELING:** The label states with which *Sample preparation* in the *Assay* the product complies only if *Sample preparation 1* is not used. When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- **USP REFERENCE STANDARDS (11).**
[USP Potassium Chloride RS](#)

¹ Weak cation-exchange resin consisting of ethylvinylbenzene, 55% cross-linked with divinylbenzene copolymer, 5–8 µm diameter, macroporous particles having an average pore size of 100 Å units. Substrate is surface grafted with carboxylic acid and phosphonic acid functional groups. Capacity NLT 2800 µEq/column (4-mm × 25-cm).

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
POTASSIUM CHLORIDE EXTENDED-RELEASE TABLETS	Documentary Standards Support	SM52020 Small Molecules 5
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM52020 Small Molecules 5

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 42(3)

OFFICIAL