

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Jan-2021
Document Type: USP Monographs
DocId: GUID-5590B24F-3EE7-4424-BE49-9117505BA8D3_3_en-US
DOI: https://doi.org/10.31003/USPNF_M67345_03_01
DOI Ref: dqb4d

© 2025 USPC
Do not distribute

Potassium Chloride Extended-Release Capsules

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click
<https://www.uspnf.com/rb-potassium-chloride-20201218>.

DEFINITION

Potassium Chloride Extended-Release Capsules contain NLT 90.0% and NMT 110.0% of the labeled amount of potassium chloride (KCl).

IDENTIFICATION

• A. [IDENTIFICATION TESTS—GENERAL \(191\), Chemical Identification Tests, Potassium](#)

Sample solution: A portion of the filtrate, obtained as directed for *Sample stock solution* in the Assay

Acceptance criteria: Meet the requirements

• B. [IDENTIFICATION TESTS—GENERAL \(191\), Chemical Identification Tests, Chloride](#)

Sample solution: A portion of the filtrate, obtained as directed for *Sample stock solution* in the Assay

Acceptance criteria: Meet the requirements

ASSAY

• PROCEDURE

Standard stock solution: 19.07 µg/mL of [potassium chloride](#), previously dried at 105° for 2 h, in [water](#). This solution contains 10 µg/mL of potassium.

Standard solutions: To separate 100-mL volumetric flasks transfer 10.0, 15.0, and 20.0 mL, respectively, of *Standard stock solution*. To each flask add 2.0 mL of [sodium chloride](#) solution (200 mg/mL) and 1.0 mL of [hydrochloric acid](#), and dilute with [water](#) to volume. The *Standard solutions* contain, respectively, 1.0, 1.5, and 2.0 µg/mL of potassium.

Sample stock solution: Place NLT 20 Capsules in a suitable container with 400 mL of [water](#), heat to boiling, and boil for 20 min. Allow to cool, transfer the solution to a 1000-mL volumetric flask, and dilute with [water](#) to volume. Filter, discarding the first 20 mL of the filtrate. Transfer a measured volume of the subsequent filtrate, equivalent to 60 mg of potassium chloride, to a 1000-mL volumetric flask, and dilute with [water](#) to volume. [NOTE—Retain a portion of the filtrate for use in the *Identification* tests.]

Sample solution: Transfer 5.0 mL of *Sample stock solution* to a 100-mL volumetric flask. Add 2.0 mL of [sodium chloride](#) solution (200 mg/mL) and 1.0 mL of [hydrochloric acid](#), and dilute with [water](#) to volume.

Instrumental conditions

(See [Atomic Absorption Spectroscopy \(852\)](#).)

Mode: Atomic absorption spectrophotometry

Analytical wavelength: Potassium emission line at 766.5 nm

Lamp: Potassium hollow-cathode

Flame: Air–acetylene

Blank: [Water](#)

Analysis

Samples: *Standard solutions*, *Sample solution*, and *Blank*

Plot the absorbance of the *Standard solutions* versus the concentration of potassium, in µg/mL, and draw the straight line best fitting the three plotted points. From the graph, determine the concentration of potassium in the *Sample solution* (µg/mL).

Calculate the percentage of the labeled amount of potassium chloride (KCl) in each Capsule taken:

$$\text{Result} = (C/C_U) \times (M_r/A_r) \times 100$$

C = concentration of potassium in the *Sample solution* as determined in this test (µg/mL)

C_U = concentration of potassium chloride in the *Sample solution* (µg/mL)

M_r = molecular weight of potassium chloride, 74.55

A_r = atomic weight of potassium, 39.10**Acceptance criteria:** 90.0%–110.0%**PERFORMANCE TESTS****Change to read:**

- [DISSOLUTION \(711\)](#).

Test 1**Medium:** [Water](#); 900 mL**Apparatus 1:** 100 rpm**Time:** 2 h**Standard stock solution:** 19.07 µg/mL of [potassium chloride](#), previously dried at 105° for 2 h, in [water](#). This solution contains 10 µg/mL of potassium.**Standard solutions:** To separate 100-mL volumetric flasks transfer 10.0, 15.0, and 20.0 mL, respectively, of *Standard stock solution*. To each flask add 2.0 mL of [sodium chloride](#) solution (200 mg/mL) and 1.0 mL of [hydrochloric acid](#), and dilute with [water](#) to volume. The *Standard solutions* contain, respectively, 1.0, 1.5, and 2.0 µg/mL of potassium.**Sample stock solution:** Filter the solution under test, and dilute quantitatively with *Medium* to obtain a solution containing 60 µg/mL of potassium chloride.**Sample solution:** Add 5.0 mL of the *Sample stock solution* to a 100-mL volumetric flask, add 2.0 mL of [sodium chloride](#) solution (200 mg/mL) and 1.0 mL of [hydrochloric acid](#), and dilute with [water](#) to volume.**Instrumental conditions**(See [Atomic Absorption Spectroscopy \(852\)](#).)**Mode:** Atomic absorption spectrophotometry**Analytical wavelength:** Potassium emission line at 766.5 nm**Lamp:** Potassium hollow-cathode**Flame:** Air–acetylene**Blank:** [Water](#)**Analysis****Samples:** *Standard solutions*, *Sample solution*, and *Blank*Plot the absorbance of the *Standard solutions* versus the concentration of potassium, in µg/mL, and draw the straight line best fitting the three plotted points. From the graph, determine the concentration of potassium in the *Sample solution* (µg/mL).

Calculate the percentage of the labeled amount of potassium chloride (KCl) dissolved:

$$\text{Result} = [C \times D \times (V/L)] \times (M_r/A_r) \times 100$$

 C = concentration of potassium in the *Sample solution* as determined in this test (µg/mL) D = dilution factor of the *Sample solution* V = volume of *Medium*, 900 mL L = labeled amount of potassium chloride (µg/Capsule) M_r = molecular weight of potassium chloride, 74.55 A_r = atomic weight of potassium, 39.10**Tolerances:** NMT 35% (Q) of the labeled amount of potassium chloride (KCl) is dissolved in 2 h. The requirements are met if the quantities dissolved from the Capsules tested conform to [Table 1](#) instead of to the table shown in [Dissolution \(711\)](#).**Table 1**

Stage	Number Tested	Acceptance Criteria
S_1	6	Each unit is within the range $Q \pm 30\%$.

Stage	Number Tested	Acceptance Criteria
S_2	6	Average of 12 units ($S_1 + S_2$) is within the range between $Q - 30\%$ and $Q + 35\%$, and no unit is outside the range $Q \pm 40\%$.
S_3	12	Average of 24 units ($S_1 + S_2 + S_3$) is within the range between $Q - 30\%$ and $Q + 35\%$, and NMT 2 units are outside the range $Q \pm 40\%$.

Test 2: If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 2*.

Standard stock solution and Standard solutions: Prepare as directed in *Test 1*.

Medium: [Water](#); 900 mL

Apparatus 1: 100 rpm

Times: 1, 2, 4, and 6 h

Sample stock solution: Transfer 4.0 mL of the solution under test into a 50-mL volumetric flask, dilute with [water](#) to volume, and filter.

Sample solution: Transfer 4.0 mL of the *Sample stock solution* to a 100-mL volumetric flask. Add 2.0 mL of [sodium chloride](#) solution (200 mg/mL) and 1.0 mL of [hydrochloric acid](#), and dilute with [water](#) to volume.

Blank solution: To a 100-mL volumetric flask, add 2.0 mL of [sodium chloride](#) solution (200 mg/mL) and 1.0 mL of [hydrochloric acid](#), and dilute with [water](#) to volume.

Instrumental conditions: Proceed as directed in *Test 1*, except do not use the *Blank*.

System suitability

Samples: *Standard solutions*

Suitability requirements

Linearity: Correlation coefficient NLT 0.99

Relative standard deviation: NMT 5.0% from 5 replicate analyses of the 1.5- μ g/mL *Standard solution*

Analysis

Samples: 1.5- μ g/mL *Standard solution*, *Sample solution*, and *Blank solution*

Calculate the percentage of the labeled amount of potassium chloride (KCl) dissolved:

$$\text{Result}_i = [(A_{U_i}/A_{S_i}) \times C_s \times D \times (V/L)] \times (M_r/A_r) \times 100$$

A_{U_i} = absorbance of potassium in the *Sample solution*

A_{S_i} = absorbance of potassium in the *Standard solution*

C_s = concentration of potassium in the *Standard solution* (μ g/mL)

D = dilution factor of the *Sample solution*

V = volume of *Medium*, 900 mL

L = labeled amount of potassium chloride (μ g/Capsule)

M_r = molecular weight of potassium chloride, 74.55

A_r = atomic weight of potassium, 39.10

Tolerances: See [Table 2](#).

Table 2

Time Point (i)	Time (h)	Amount Dissolved (%) 750 mg/Capsule
1	1	25–45

Time Point (i)	Time (h)	Amount Dissolved (%) 750 mg/Capsule
2	2	45–65
3	4	70–90
4	6	NLT 85

The percentages of the labeled amount of potassium chloride (KCl), dissolved at the times specified, conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).

▲ **Test 4:** If the product complies with this procedure, the labeling indicates that it meets USP *Dissolution Test 4*.

[**NOTE**—Use water with a conductivity of NMT 1 μ S/cm to prepare solutions, except *Medium*.]

Medium: [Water](#); 900 mL

Apparatus 1: 100 rpm

Times: 1, 2, 4, and 8 h

Solution A: 100 mM [methanesulfonic acid](#) prepared as follows. Transfer 6.5 mL of [methanesulfonic acid](#) to a 1000-mL volumetric flask and dilute with water to volume.

Mobile phase: *Solution A* and water (20:80)

Standard stock solution: 600 μ g/mL of [USP Potassium Chloride RS](#) in water

Standard solution A: 3 μ g/mL of [USP Potassium Chloride RS](#) in water from *Standard stock solution*

Standard solution B: 12 μ g/mL of [USP Potassium Chloride RS](#) in water from *Standard stock solution*

Standard solution C: 30 μ g/mL of [USP Potassium Chloride RS](#) in water from *Standard stock solution*

Standard solution D: 48 μ g/mL of [USP Potassium Chloride RS](#) in water from *Standard stock solution*

Standard solution E: 60 μ g/mL of [USP Potassium Chloride RS](#) in water from *Standard stock solution*

Standard solution F: 72 μ g/mL of [USP Potassium Chloride RS](#) in water from *Standard stock solution*

Standard solution G: 90 μ g/mL of [USP Potassium Chloride RS](#) in water from *Standard stock solution*

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size at the times specified, discarding the first few milliliters of the filtrate. Replace the portion removed with same volume of *Medium*. Dilute the filtrate with water, if necessary, to obtain a solution with a concentration similar to that of *Standard solution E*.

Chromatographic system

(See [Chromatography \(621\)](#), [System Suitability](#).)

Mode: LC

Detector: Conductivity with suppression

Columns

Guard: 4-mm \times 5-cm; 8.5- μ m packing [L106](#)

Analytical: 4-mm \times 25-cm; 8.5- μ m packing [L106](#)

Suppressor: 4-mm cation or a suitable suppressor

Column temperature: 30°

Flow rate: 1 mL/min

Injection volume: 50 μ L

Run time: NLT 2.5 times the retention time of potassium

System suitability

Samples: *Standard solution A*, *Standard solution B*, *Standard solution C*, *Standard solution D*, *Standard solution E*, *Standard solution F*, and *Standard solution G*

Suitability requirements

Tailing factor: NMT 2.0, *Standard solution E*

Relative standard deviation: NMT 2.0%, *Standard solution E*

Correlation coefficient: NLT 0.999, from the linear regression in the *Analysis*

Y-intercept: \pm 2% of *Standard solution E* response, from the calibration curve in the *Analysis*

Analysis

Samples: *Standard solution A*, *Standard solution B*, *Standard solution C*, *Standard solution D*, *Standard solution E*, *Standard solution F*, *Standard solution G*, and *Sample solution*

Determine the responses for *Standard solution A*, *Standard solution B*, *Standard solution C*, *Standard solution D*, *Standard solution E*, *Standard solution F*, and *Standard solution G*. Construct a linear calibration curve by plotting response values of *Standard solution A*,

Standard solution B, Standard solution C, Standard solution D, Standard solution E, Standard solution F, and Standard solution G versus their corresponding concentrations in mg/mL.

From the linear calibration curve, determine the *Correlation coefficient* and *Y-intercept*.

Calculate the concentration (C_i) of potassium chloride (KCl) in the sample withdrawn from the vessel at time point i :

$$\text{Result} = (r_u/r_s) \times C_s \times D$$

r_u = peak response of potassium from the *Sample solution* at time point i

r_s = peak response of potassium from *Standard solution E*

C_s = concentration of [USP Potassium Chloride RS](#) in *Standard solution E* (mg/mL)

D = dilution factor of the *Sample solution*, if needed

Calculate the percentage of the labeled amount of potassium chloride (KCl) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_s)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{(C_4 \times V) + [(C_3 + C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

C_i = concentration of potassium chloride in the portion of sample withdrawn at time point i (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/capsule)

V_s = volume of the *Sample solution* withdrawn at each time point (mL)

Tolerances: See [Table 3](#).

Table 3

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	NMT 20
2	2	25–45
3	4	55–80
4	8	NLT 80

The percentage of the labeled amount of potassium chloride (KCl) dissolved at the times specified conforms to [Dissolution \(711\)](#),

[Acceptance Table 2](#).▲ (RB 1-Jan-2021)

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meet the requirements

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers, and store at a temperature not exceeding 30°.
- **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.

Add the following:

- ▲. [USP REFERENCE STANDARDS \(11\)](#)

[USP Potassium Chloride RS](#)▲ (RB 1-Jan-2021)

Topic/Question	Contact	Expert Committee
POTASSIUM CHLORIDE EXTENDED-RELEASE CAPSULES	Documentary Standards Support	SM52020 Small Molecules 5
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM52020 Small Molecules 5

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. Information currently unavailable

Current DocID: GUID-5590B24F-3EE7-4424-BE49-9117505BA8D3_3_en-US

DOI: https://doi.org/10.31003/USPNF_M67345_03_01

DOI ref: [dqb4d](#)

OFFICIAL