

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Aug-2022
Document Type: USP Monographs
DocId: GUID-5F22A12C-CE90-461E-8B14-9F21F9B75503_2_en-US
DOI: https://doi.org/10.31003/USPNF_M67253_02_01
DOI Ref: jb3o3

© 2025 USPC
Do not distribute

Potassium Bicarbonate and Potassium Chloride Effervescent Tablets for Oral Solution

DEFINITION

Potassium Bicarbonate and Potassium Chloride Effervescent Tablets for Oral Solution contain NLT 90.0% and NMT 110.0% of the labeled amounts of potassium (K) and chloride (Cl).

IDENTIFICATION

Change to read:

- A. ▲ (USP 1-Aug-2022)

Sample: 1 Tablet for Oral Solution

Analysis 1: Dissolve the *Sample* in 100 mL of [water](#), and collect the gas that evolves.

Acceptance criteria 1: The *Sample* effervesces when dissolved.

Analysis 2: Proceed as directed in [Identification Tests—General \(191\), Chemical Identification Tests, Bicarbonate](#) on the gas collected from *Analysis 1*.

Acceptance criteria 2: Meets the requirements of test A

- ▲ (USP 1-Aug-2022)

Add the following:

▲• B. The retention time of the potassium peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
Procedure 1: Potassium. ▲ (USP 1-Aug-2022)

Add the following:

▲• C. The retention time of the chloride peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
Procedure 2: Chloride. ▲ (USP 1-Aug-2022)

ASSAY

Change to read:

- **PROCEDURE 1: POTASSIUM**

▲Use water with a resistivity of NLT 18 megohm-cm to prepare the solutions.

Mobile phase: 4 mM [nitric acid](#)

System suitability solution: 30 µg/mL of [USP Potassium Chloride RS](#) and 15 µg/mL of magnesium¹ in [water](#)

Standard solution: 30 µg/mL of [USP Potassium Chloride RS](#) in [water](#)

Sample stock solution: Nominally 10 mg/mL of potassium chloride prepared as follows. Finely powder NLT 20 Tablets for Oral Solution and transfer an appropriate portion of the powder to a suitable volumetric flask. Add about 10% of the final volume of [water](#), and swirl until effervescence ceases. Dilute with [water](#) to volume. [NOTE—Pass through a suitable filter if necessary.]

Sample solution: Nominally 30 µg/mL of potassium chloride in [water](#) from the *Sample stock solution*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Direct conductivity

Columns

Guard: 4-mm × 0.5-cm; 5-µm packing [L76](#)

Analytical: 4-mm × 15-cm; 5-µm packing [L76](#)

Column temperature: 30°

Flow rate: 0.9 mL/min

Injection volume: 20 μ L**Run time:** NLT 2 times the retention time of potassium**System suitability****Samples:** System suitability solution and Standard solution

[NOTE—The relative retention times for the potassium and magnesium ions are 1.0 and 1.3, respectively.]

Suitability requirements**Resolution:** NLT 3.0 between the potassium and magnesium ions, System suitability solution**Tailing factor:** NMT 2.0, Standard solution**Relative standard deviation:** NMT 2.0%, Standard solution**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of the labeled amount of potassium (K) in the portion of Tablets for Oral Solution taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of potassium from the Sample solution r_S = peak response of potassium from the Standard solution C_S = concentration of [USP Potassium Chloride RS](#) in the Standard solution (μ g/mL) C_U = nominal concentration of potassium chloride in the Sample solution (μ g/mL) ▲ (USP 1-Aug-2022)**Acceptance criteria:** 90.0%–110.0%**Change to read:**• **PROCEDURE 2: CHLORIDE**

▲[NOTE—Use water with a resistivity of NLT 18 megohm-cm to prepare the solutions.]

Standard solution, Sample stock solution, and Sample solution: Prepare as directed in Assay, Procedure 1: Potassium.**Mobile phase:** 15 mM [sodium carbonate](#) and 1.5 mM [sodium hydroxide](#) in [water](#)**System suitability solution:** 30 μ g/mL of [USP Potassium Chloride RS](#) and 20 μ g/mL of [USP Sodium Nitrite RS](#) in [water](#)**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** Conductivity with suppression**Columns****Guard:** 4.0-mm \times 0.5-cm; 4.6- μ m packing [L91](#)**Analytical:** 4.0-mm \times 10-cm; 4.6- μ m packing [L91](#)**Column temperature:** 45°**Flow rate:** 0.8 mL/min**Injection volume:** 20 μ L**Run time:** NLT 3 times the retention time of chloride for Standard solution and System suitability solution; NLT 9 times the retention time of chloride for Sample solution**System suitability****Samples:** System suitability solution and Standard solution

[NOTE—The relative retention times for the chloride and nitrite ions are 1.0 and 1.2, respectively.]

Suitability requirements**Resolution:** NLT 2.0 between the chloride and nitrite ions, System suitability solution**Tailing factor:** NMT 2.0 for the chloride ion, Standard solution**Relative standard deviation:** NMT 2.0% for the chloride ion, Standard solution**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of the labeled amount of chloride (Cl) in the portion of Tablets for Oral Solution taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of chloride from the Sample solution

r_s = peak response of chloride from the *Standard solution*

C_s = concentration of [USP Potassium Chloride RS](#) in the *Standard solution* ($\mu\text{g/mL}$)

C_u = nominal concentration of potassium chloride in the *Sample solution* ($\mu\text{g/mL}$)▲ (USP 1-Aug-2022)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meet the requirements

ADDITIONAL REQUIREMENTS

Change to read:

- **PACKAGING AND STORAGE:** Preserve in tight containers, ▲and store under cool and dry conditions not exceeding 30°.▲ (USP 1-Aug-2022)

Change to read:

- **LABELING:** The label states the potassium and chloride contents in terms of weight and in terms of milliequivalents. Where the ▲Tablets for Oral Solution▲ (USP 1-Aug-2022) are packaged in individual pouches, the label instructs the user not to open until the time of use.

Add the following:

▲• [USP REFERENCE STANDARDS \(11\)](#)

[USP Potassium Chloride RS](#)

[USP Sodium Nitrite RS](#)▲ (USP 1-Aug-2022)

¹ From commercially available National Institute of Standards and Technology (NIST)-traceable standard solution for magnesium.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
POTASSIUM BICARBONATE AND POTASSIUM CHLORIDE EFFERVESCENT TABLETS FOR ORAL SOLUTION	Documentary Standards Support	SM52020 Small Molecules 5
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM52020 Small Molecules 5

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 45(5)

Current DocID: [GUID-5F22A12C-CE90-461E-8B14-9F21F9B75503_2_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M67253_02_01

DOI ref: [jb3o3](#)