

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Feb-2022
Document Type: USP Monographs
DocId: GUID-46CE3048-6C88-4D35-B80D-CD854C4F955C_4_en-US
DOI: https://doi.org/10.31003/USPNF_M67260_04_01
DOI Ref: 1b87b

© 2025 USPC
Do not distribute

Potassium and Sodium Bicarbonates and Citric Acid Effervescent Tablets for Oral Solution

DEFINITION

Potassium and Sodium Bicarbonates and Citric Acid Effervescent Tablets for Oral Solution contain NLT 90.0% and NMT 110.0% of the labeled amounts of potassium bicarbonate (KHCO_3), sodium bicarbonate (NaHCO_3), and anhydrous citric acid ($\text{C}_6\text{H}_8\text{O}_7$).

IDENTIFICATION

Change to read:

- A. ▲ (OFFICIAL 1-FEB-2022)

Sample: 1 Tablet for Oral Solution

Analysis 1: Dissolve the *Sample* in 100 mL of [water](#), and collect the gas that evolves.

Acceptance criteria 1: The *Sample* effervesces when dissolved.

Analysis 2: Proceed as directed in [Identification Tests—General \(191\), Chemical Identification Tests, Bicarbonate](#) on the gas collected from *Analysis 1*.

Acceptance criteria 2: Meets the requirements ▲ of test A▲ (Official 1-Feb-2022)

Add the following:

- ▲ B. The retention times of the sodium and potassium peaks of the *Sample* solutions correspond to those of the *Standard* solution, as obtained in the Assay, *Procedure 1: Potassium Bicarbonate and Sodium Bicarbonate*.▲ (Official 1-Feb-2022)

Add the following:

- ▲ C. The retention time of the citrate peak of the *Sample* solution corresponds to that of *Standard solution 1*, as obtained in the Assay, *Procedure 2: Anhydrous Citric Acid*.▲ (Official 1-Feb-2022)

ASSAY

Change to read:

- ▲ **PROCEDURE 1:**▲ (OFFICIAL 1-FEB-2022) **POTASSIUM BICARBONATE AND SODIUM BICARBONATE**

▲ Use water with a resistivity of NLT 18 megohm-cm to prepare the solutions.

Mobile phase: 4 mM [nitric acid](#)

System suitability solution: 30 µg/mL each of [USP Sodium Bicarbonate RS](#) and [USP Ammonium Chloride RS](#) in [water](#)

Standard solution: 10 µg/mL of [USP Potassium Bicarbonate RS](#) and 30 µg/mL of [USP Sodium Bicarbonate RS](#) in [water](#)

Sample stock solution: Nominally 3 mg/mL of potassium bicarbonate prepared as follows. Finely powder Tablets for Oral Solution (NLT 20) and transfer an appropriate portion of the powder to a suitable volumetric flask. Add about 20% of the final volume of [water](#), and swirl until effervescence ceases. Dilute with [water](#) to volume. [NOTE—Tablets for Oral Solution and powder are hygroscopic. After removal from the container, grind the Tablets for Oral Solution promptly in an atmosphere of low relative humidity, and weigh the powder promptly.]

Sample solution A: Nominally 10 µg/mL of potassium bicarbonate in [water](#) from the *Sample stock solution*

Sample solution B: Nominally 30 µg/mL of sodium bicarbonate in [water](#) from the *Sample stock solution*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Direct conductivity

Columns

Guard: 4-mm × 0.5-cm; 5-µm packing [L76](#)

Analytical: 4-mm × 15-cm; 5-µm packing [L76](#)

Column temperature: 30°

Flow rate: 0.9 mL/min**Injection volume:** 20 μ L**Run time:** NLT 2 times the retention time of the potassium peak**System suitability****Samples:** System suitability solution and Standard solution

[NOTE—The relative retention times for the sodium, ammonium, and potassium peaks are 1.0, 1.2, and 1.7, respectively.]

Suitability requirements**Resolution:** NLT 2.0 between the sodium and ammonium peaks, System suitability solution**Tailing factor:** NMT 2.0 for the sodium and potassium peaks, Standard solution**Relative standard deviation:** NMT 2.0% for the sodium and potassium peaks, Standard solution**Analysis****Samples:** Standard solution, Sample solution A, and Sample solution BCalculate the percentage of the labeled amount of potassium bicarbonate (KHCO_3) in the portion of Tablets for Oral Solution taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak response of potassium from Sample solution A r_s = peak response of potassium from the Standard solution C_s = concentration of [USP Potassium Bicarbonate RS](#) in the Standard solution ($\mu\text{g/mL}$) C_u = nominal concentration of potassium bicarbonate in Sample solution A ($\mu\text{g/mL}$)Calculate the percentage of the labeled amount of sodium bicarbonate (NaHCO_3) in the portion of Tablets for Oral Solution taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak response of sodium from Sample solution B r_s = peak response of sodium from the Standard solution C_s = concentration of [USP Sodium Bicarbonate RS](#) in the Standard solution ($\mu\text{g/mL}$) C_u = nominal concentration of sodium bicarbonate in Sample solution B ($\mu\text{g/mL}$)

▲ (Official 1-Feb-2022)

Acceptance criteria: 90.0%–110.0% ▲ (Official 1-Feb-2022)**Change to read:**

- ▲ **PROCEDURE 2:** ▲ (Official 1-Feb-2022) **ANHYDROUS CITRIC ACID**

Mobile phase, Standard ▲solution ▲ (Official 1-Feb-2022) 1, and **Chromatographic system:** Proceed as directed in [Assay for Citric Acid/Citrate and Phosphate \(345\)](#).

Sample solution: Nominally 20 $\mu\text{g/mL}$ of citrate prepared as follows. Transfer the equivalent of 40 mg of anhydrous citric acid from the Sample stock solution ▲ ▲ (Official 1-Feb-2022) in ▲ [Assay, Procedure 1: Potassium Bicarbonate and Sodium Bicarbonate](#) ▲ (Official 1-Feb-2022) into a suitable volumetric flask, and prepare as directed in [\(345\), Assay, Procedure, Sample solution \(for the assay of citric acid/citrate\)](#).

Analysis**Samples:** Standard ▲solution ▲ (Official 1-Feb-2022) 1 and Sample solution

▲ (Official 1-Feb-2022)

Calculate the percentage of the labeled amount of anhydrous citric acid ($\text{C}_6\text{H}_8\text{O}_7$) in the portion of Tablets for Oral Solution taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times 100$$

 r_u = peak response of citrate from the Sample solution r_s = peak response of citrate from Standard ▲solution ▲ (Official 1-Feb-2022) 1

C_s = concentration of citrate in Standard Δ solution Δ (Official 1-Feb-2022) 1 ($\mu\text{g/mL}$)

C_u = nominal concentration of citrate in the Sample solution ($\mu\text{g/mL}$)

M_{r1} = molecular weight of anhydrous citric acid, 192.12

M_{r2} = molecular weight of citrate, 189.10

Acceptance criteria: 90.0%–110.0%

SPECIFIC TESTS

- **ACID-NEUTRALIZING CAPACITY (301):** NLT 5 mEq of acid is consumed by the minimum single dose recommended in the labeling.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers.
- **LABELING:** Label Tablets for Oral Solution to state the sodium content. The label states also that the tablets are to be dissolved in water before being taken.

Add the following:

▲. **USP REFERENCE STANDARDS (11)**

[USP Ammonium Chloride RS](#)

[USP Potassium Bicarbonate RS](#)

[USP Sodium Bicarbonate RS](#) ▲ (Official 1-Feb-2022)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
POTASSIUM AND SODIUM BICARBONATES AND CITRIC ACID EFFERVESCENT TABLETS FOR ORAL SOLUTION	Documentary Standards Support	SM52020 Small Molecules 5
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM52020 Small Molecules 5

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 45(4)

Current DocID: GUID-46CE3048-6C88-4D35-B80D-CD854C4F955C_4_en-US

DOI: https://doi.org/10.31003/USPNF_M67260_04_01

DOI ref: [1b87b](#)