

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-Jun-2023
 Document Type: NF Monographs
 DocId: GUID-4FBC4B8C-93FE-4EB0-83C6-B27342F46A0B_3_en-US
 DOI: https://doi.org/10.31003/USPNF_M65955_03_01
 DOI Ref: gm9ju

© 2025 USPC
 Do not distribute

Polyisobutylene

CAS RN®: 9003-27-4.

DEFINITION

Polyisobutylene is a synthetic polymer produced by the low-temperature polymerization of isobutylene in liquid ethylene, methylene chloride, or hexane, using an aluminum-chloride or boron-trifluoride catalyst. It may contain a suitable stabilizer.

IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197F](#)

Analysis: Prepare the sample by dissolving it in hot toluene and evaporating on a salt plate.

Acceptance criteria: Meets the requirements

IMPURITIES

Change to read:

- [▲ LEAD \(251\), Procedures, Procedure 1](#) ▲ (CN 1-JUN-2023)

Sample: 3.3 g

Control: 10 mL of *Diluted Standard Lead Solution* (10 µg of lead)

Analysis: Transfer the *Sample* to a porcelain dish, and heat on a hot plate until completely charred. Then heat in a muffle furnace at 480° for 8 h, and cool. Cautiously add 5 mL of nitric acid, evaporate to dryness on a hot plate, then heat again in the muffle furnace for exactly 15 min, and cool. Extract the ash with two 10-mL portions of water, filtering the extract into a separator. Leach any insoluble material on the filter with 6 mL of *Ammonium Citrate Solution*, 2 mL of *Hydroxylamine Hydrochloride Solution*, and 5 mL of water, adding the filtered washings to the separator. To the resulting solution and *Control* continue as directed in the chapter for *Procedure*, beginning with "Add 2 drops of phenol red TS".

Acceptance criteria: NMT 3 µg/g; the color generated by the *Sample* does not exceed that generated by the *Control*.

SPECIFIC TESTS

- [VISCOSEY—CAPILLARY METHODS \(911\)](#)

Solvent: Use isoctane.

Sample solution: Prepare a solution of Polyisobutylene in the *Solvent* having a known concentration as indicated in [Table 1](#). The solution must be homogenous before testing. For the Polyisobutylene having a Staudinger Index of 100 and higher, add the *Solvent* to the weighed material, and allow it to stand in an oven at 80° for 12–24 h. [NOTE—A heated mechanical shaker may be used to shorten the dissolution time; it is recommended that a gentle shaker be used to avoid shearing the polymers. Take adequate precautions to prevent evaporation of the *Solvent*.]

Table 1

Staudinger Index ^a	Concentration (g/cm ³)
25–60	0.01
60–100	0.005

Staudinger Index ^a	Concentration (g/cm ³)
100–350	0.002
350–700	0.001

^a The Staudinger Index is equal to 100 times the intrinsic viscosity.

Analysis: Before each measurement, let the solutions be temperature equilibrated for 10 min. Using a suitable Ubbelohde capillary viscometer having dimensions such that the flow time is NLT 200 s, immersed in a controlled temperature bath, measure the flow of the Solvent and of the *Sample solution* at 20°. Repeat the *Analysis* three times, and calculate the average.

Calculate the reduced viscosity:

$$J = (t/t_0 - 1)/C$$

t = average flow time of the *Sample solution* (s)

*t*₀ = average flow time of the Solvent (s)

C = concentration of the *Sample solution* (g/cm³)

Calculate the Staudinger Index:

$$J_0 = J/[1 + 0.31(t/t_0 - 1)]$$

Acceptance criteria: It is within the limits specified on the label.

- [Loss on Drying \(731\)](#)

Sample: 5 g

Analysis: Dry for 2 h at 105°.

Acceptance criteria: NMT 0.3%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed containers. No storage requirements specified.
- **LABELING:** Label it to indicate the range for intrinsic viscosity or the range for the Staudinger Index, and the name and quantity of any added stabilizer. [NOTE—The Staudinger Index is equal to 100 times the intrinsic viscosity.]
- [USP REFERENCE STANDARDS \(11\)](#)

[USP Polyisobutylene RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
POLYISOBUTYLENE	Documentary Standards Support	CE2020 Complex Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	CE2020 Complex Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 32(3)

Current DocID: [GUID-4FBC4B8C-93FE-4EB0-83C6-B27342F46A0B_3_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M65955_03_01

DOI ref: gm9ju