

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Aug-2018
Document Type: NF Monographs
DocId: GUID-7C7191AB-CE32-4B6E-B8E2-E02EDB31ED0A_5_en-US
DOI: https://doi.org/10.31003/USPNF_M66235_05_01
DOI Ref: iwl2q

© 2025 USPC
Do not distribute

Polydextrose

CAS RN®: 68424-04-4.

DEFINITION

Polydextrose is a randomly branched polymer prepared by melting and subsequent condensation of the ingredients, which consist of approximately 90 parts dextrose, 10 parts sorbitol, and up to 1 part citric acid or 0.1 part phosphoric acid. The 1,6-glycosidic linkage predominates in the polymer but other linkages are present. It contains NLT 90.0% of dextrose polymer units, calculated on the anhydrous and ash-free basis. It contains small quantities of free dextrose, sorbitol, and 1,6-anhydro-D-glucose (levoglucosan), with traces of citric acid or phosphoric acid.

IDENTIFICATION

- **A.** To 1 drop of a solution (1 in 10), add 4 drops of 5% phenol solution, then rapidly add 15 drops of [sulfuric acid TS](#): a deep yellow to orange color is produced.
- **B.** With vigorous swirling, add 1 mL of [acetone](#) to 1 mL of a solution (1 in 10): the solution remains clear.
- **C.** With vigorous swirling, add 2 mL of [acetone](#) to the solution obtained in *Identification B*: a heavy, milky turbidity develops immediately.
- **D.** To 1 mL of a solution (1 in 50), add 4 mL of [alkaline cupric citrate TS](#). Boil vigorously for 2–4 min. Remove from heat, and allow the precipitate (if any) to settle: the supernatant is blue or blue-green.

Add the following:

▲• **E. Chromatographic Identity**

Analysis: Proceed as directed in the Assay.

Acceptance criteria: The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.▲ (1S (NF36))

ASSAY

Change to read:

• **PROCEDURE**

Mobile phase: 0.001 N sulfuric acid. Pass this solution through a filter of 0.5-μm pore size, and degas.

Standard solution: 4.0 mg/mL of [USP Polydextrose RS](#)▲ (1S (NF36)) in *Mobile phase*

Sample solution: 4.0 mg/mL of ▲Polydextrose in *Mobile phase*▲ (ERR 1-Jul-2018)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Refractive index

Detector temperature: 35 ± 0.1°

Columns

Guard: 4.6-mm × 3.0-cm; packing [L17](#)

Analytical: 7.8-mm × 30-cm; packing [L17](#)

Flow rate: 0.6 mL/min

Injection volume: 20 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Relative standard deviation: NMT 2.0%

Analysis**Samples:** Standard solution and Sample solution

Calculate the percentage of dextrose polymer units in the portion of Polydextrose taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of dextrose polymer units from the *Sample solution*

r_S = peak response of dextrose polymer units from the *Standard solution*

C_S = concentration of [USP Polydextrose RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Polydextrose in the *Sample solution* (mg/mL)

Acceptance criteria: ▲NLT 90.0% on the anhydrous and ash-free basis▲ (ERR 1-Jul-2018)

IMPURITIES

• [RESIDUE ON IGNITION \(281\)](#): NMT 0.3%

• **LIMIT OF LEAD**

[NOTE—Use reagent-grade chemicals with as low a lead content as is practicable, as well as high-purity water and gases. Before use in this analysis, rinse all glassware and plasticware twice with 10% nitric acid and twice with 10% hydrochloric acid, and then rinse them thoroughly with Purified Water.]

Matrix modifier solution: Prepare a solution in water containing 100.0 mg of [dibasic ammonium phosphate](#) per 10 mL of solution.

Lead nitrate stock solution: Dissolve 159.8 mg of [lead nitrate](#) in 100 mL of water to which has been added 1 mL of [nitric acid](#), then dilute with water to 1000 mL. Prepare and store this solution in glass containers free from soluble lead salts.

Standard lead solution: On the day of use, dilute 10.0 mL of *Lead nitrate stock solution* with water to 100.0 mL. Each milliliter of *Standard lead solution* contains the equivalent of 10 µg of lead.

Standard solution A: 0.02 µg/mL of lead, from *Standard lead solution* in water

Standard solution B: 0.05 µg/mL of lead, from *Standard lead solution* in water

Standard solution C: 0.1 µg/mL of lead, from *Standard lead solution* in water

Standard solution D: 0.2 µg/mL of lead, from *Standard lead solution* in water

Standard solution E: 0.5 µg/mL of lead, from *Standard lead solution* in water

Sample solution: Transfer 1.0 g of Polydextrose, weighed and calculated on the anhydrous and ash-free basis, into a 10-mL volumetric flask, and dissolve in and dilute with water to volume.

Spiked sample solution: Transfer 1.0 g of Polydextrose, weighed and calculated on the anhydrous and ash-free basis, into a 10-mL volumetric flask, and dissolve in water. Add 100 µL of the *Standard lead solution*, and dilute with water to volume. This solution contains 0.1 µg/mL of added lead.

Instrumental conditions

(See [Atomic Absorption Spectroscopy \(852\)](#).)

Mode: Graphite furnace atomic absorption spectrophotometer, equipped with a pyrolytic tube with a platform

Analytical wavelength: Lead emission line of 283.3 nm

Lamp: A lead hollow-cathode lamp, using a slit width of 0.7 mm (set low) and a deuterium arc lamp for background correction

Autosampler

Sample volume: 10 µL

Alternative volume: 10 µL of *Matrix modifier solution*

Furnace program: For the temperature program, see [Table 1](#).

Table 1

Step	Dry	Char	Atomize	Clean	Recharge
Temperature (°)	130	800	2400	2600	20
Ramp time (s)	20	20	0	1	2

Step	Dry	Char	Atomize	Clean	Recharge
Hold time (s)	40	40	6	5	20
Argon flow rate (mL/min)	300	300	50	300	300

Analysis

Samples: 10 μ L of the *Matrix modifier solution* was added into each 10- μ L aliquot of the five *Standard solutions*, a mixture of 10 μ L of the *Matrix modifier solution* and 10 μ L of the *Sample solution*, and a mixture of 10 μ L of the *Matrix modifier solution* and 10 μ L of the *Spiked sample solution*

Concomitantly determine the absorbances of the *Samples* using the *Instrumental conditions* described above. Plot the absorbance of each *Standard solution*, compensated for background correction, versus its content of lead, in μ g/mL, and draw the best straight line fitting the five points. From this plot, determine the concentrations, C_T and C_{ST} , in μ g/mL, of lead in the *Sample solution* and the *Spiked sample solution*, respectively.

Calculate the percentage recovery taken:

$$\text{Result} = [(C_{ST} - C_T)/A] \times 100$$

A = quantity of lead added to the *Spiked sample solution*, 0.1 μ g/mL

Calculate the content, in μ g/g, of lead in the portion of Polydextrose taken:

$$\text{Result} = (C_T/W) \times V$$

W = weight of Polydextrose taken to prepare the *Sample solution* (g)

V = volume of the *Sample solution*, 10 mL

Acceptance criteria: NMT 0.5 μ g/g. The recovery is 80%–120%.

• **ORGANIC IMPURITIES, PROCEDURE 1: LIMIT OF 5-HYDROXYMETHYLFURFURAL AND RELATED COMPOUNDS**

Sample solution: 1.0 g of Polydextrose, weighed and calculated on the anhydrous and ash-free basis, diluted with water to 100 mL

Analysis: Determine the absorbance of the *Sample solution* in a 1-cm quartz cell at 283 nm, with a suitable spectrophotometer, using water as the blank.

Calculate the percentage of 5-hydroxymethylfurfural and related compounds in the Polydextrose taken:

$$\text{Result} = 100 \times (V \times M_r \times A) / (M \times L \times W)$$

V = volume of the *Sample solution*, 0.1 L

M_r = molecular weight of 5-hydroxymethylfurfural, 126 g/mol

A = absorbance of the *Sample solution*

M = molar extinction coefficient of 5-hydroxymethylfurfural at a wavelength of 283 nm, 16,830 L/mol cm

L = path length of the spectrophotometer cell (cm)

W = weight of Polydextrose taken to prepare the *Sample solution* (g)

Acceptance criteria: NMT 0.1%

• **ORGANIC IMPURITIES, PROCEDURE 2: LIMIT OF MONOMERS**

Mobile phase, Sample solution, and Chromatographic system: Proceed as directed in the Assay.

Standard solution: 0.08 mg/mL each of [USP 1,6-Anhydro-D-glucose RS](#) and [USP Sorbitol RS](#), and 0.16 mg/mL of [USP Dextrose RS](#), in *Mobile phase*

System suitability

Sample: *Standard solution*

[NOTE—For relative retention times, see [Table 2](#).]

Table 2

Name	Relative Retention Time
Dextrose (glucose)	0.7
Sorbitol	0.8
An isomer of 1,6-anhydro- α -D-glucose (α -anhydroglucose furanose form)	0.9
1,6-Anhydro- α -D-glucose (α -anhydroglucose pyranose form)	1.0

Suitability requirements**Resolution:** NLT 1.0**Relative standard deviation:** NMT 5.0%**Analysis****Samples:** Standard solution and Sample solutionUse peak response of [USP 1,6-Anhydro- \$\alpha\$ -D-glucose RS](#) in the Standard solution for calculation of percentage of the isomer of 1,6-anhydro- α -D-glucose in the Sample solution.

Calculate the percentage of each monomer in the portion of Polydextrose taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak response of the respective monomer from the Sample solution r_s = peak response of the respective monomer from the Standard solution C_s = concentration of the respective standard monomer in the Standard solution (mg/mL) C_u = concentration of Polydextrose in the Sample solution (mg/mL)**Acceptance criteria:** NMT 4.0% for 1,6-anhydro- α -D-glucose, NMT 4.0% for dextrose, and NMT 2.0% for sorbitol. [NOTE—In the case of 1,6-anhydro- α -D-glucose, the peak areas for the pyranose and furanose forms are combined.]**SPECIFIC TESTS****• MOLECULAR WEIGHT LIMIT****Mobile phase:** Dissolve 35.0 g of sodium nitrate and 1.0 g of sodium azide in 100 mL of water. Dilute with water to 4 L. Pass through a filter of 0.45- μ m pore size, and degas by applying an aspirator vacuum for 30 min. The resulting Mobile phase is 0.1 N sodium nitrate containing 0.025% sodium azide.**Standard solution:** Transfer 20 mg each of [USP Dextrose RS](#), stachyose, and 5800-, 23,700-, and 100,000-molecular weight (MW) pullulan standards into a 10-mL volumetric flask. Dissolve in and dilute with Mobile phase to volume. Pass through a syringe filter of 0.45- μ m pore size into a suitable autosampler vial, and seal.**Sample solution:** Transfer 50 mg of Polydextrose into a 10-mL volumetric flask. Dissolve in and dilute with Mobile phase to volume. Pass through a syringe filter of 0.45- μ m pore size into a suitable autosampler vial, and seal.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** Refractive index set at a sensitivity of 4×10^{-6} refractive index units full scale and maintained at a temperature of $35 \pm 0.1^\circ$ **Column:** 7.8-mm \times 30-cm; packing L39**Column temperature:** 45° **Flow rate:** 0.8 mL/min

[NOTE—After installation of a new column, pump Mobile phase through the column overnight at a rate of 0.3 mL/min. Before calibration or analysis, increase the flow slowly over a 1-min period to 0.8 mL/min. Continue to pump Mobile phase through the column at this flow rate for at least 1 h before the first injection. Check the flow gravimetrically, and adjust it if necessary. Reduce the flow rate to about 0.1 mL/min when the system is not in use.]

Injection volume: 50 μ L**System suitability**

Sample: Standard solution

[NOTE—The retention times for each component determined on replicate injections agree within ± 2 s.]

Chromatograph five replicate injections of the *Standard solution*, allowing 15 min between injections, and record the retention times of the components of the *Standard solution*.

Insert the average retention time along with the molecular weight of each component in the *Standard solution* into the calibration table of the molecular weight distribution software. Check the regression results for a cubic fit of the calibration points, and obtain a *Correlation coefficient R*, for the line.

Suitability requirements

Resolution: Dextrose and stachyose are baseline resolved from one another and from the 5800-MW pullulan standard.

[NOTE—Prominent negative baseline valleys are usually observed between the peaks for the 5800-; 23,700-; and 100,000-MW pullulan standards.]

Correlation coefficient R: NLT 0.9999

Analysis**Samples:** Standard solution and Sample solution

Use the molecular weight distribution software of the data reduction system to generate a molecular weight distribution plot of Polydextrose.

Acceptance criteria: No measurable peak above a molecular weight of 22,000 is found.

- **pH (791):** 2.5–5.0, in a solution (1 in 10)
- **WATER DETERMINATION (921), Method I:** NMT 4.0%. Use a mixture of Hydralan solvent and Hydralan formamide dry (2:1) as a solvent. Perform the titration at 50° in a jacketed beaker.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers. Store in a cool and dry place.

- **USP REFERENCE STANDARDS (11):**

[USP 1,6-Anhydro-D-glucose RS](#)

[USP Dextrose RS](#)

[USP Polydextrose RS](#)

[USP Sorbitol RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
POLYDEXTROSE	Documentary Standards Support	CE2020 Complex Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	CE2020 Complex Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 43(2)

Current DocID: [GUID-7C7191AB-CE32-4B6E-B8E2-E02EDB31ED0A_5_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M66235_05_01

DOI ref: [iwl2q](#)