

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-Aug-2023
 Document Type: USP Monographs
 DocId: E4F23E9B-3A4D-4730-A017-FCF421A250AF_5_en-US
 DOI: https://doi.org/10.31003/USPNF_M65205_05_01
 DOI Ref: n7czl

© 2025 USPC
 Do not distribute

Piperacillin

$C_{23}H_{27}N_5O_7S \cdot H_2O$ 535.57

$C_{23}H_{27}N_5O_7S$ 517.56

4-Thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid,
 6-[[[(4-ethyl-2,3-dioxo-1-piperazinyl)carbonyl] amino]phenylacetyl]amino]-3,3-dimethyl-7-oxo-, monohydrate, [2S-2 α ,5 α ,6 β (S*)];
 (2S,5R,6R)-6-[(R)-2-(4-Ethyl-2,3-dioxo-1-piperazinecarboxamido)-2-phenylacetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-
 carboxylic acid monohydrate CAS RN®: 66258-76-2; UNII: X00B0D500E.
 Anhydrous CAS RN®: 61477-96-1; UNII: 9I628532GX.

DEFINITION

Piperacillin contains NLT 960 μ g/mg and NMT 1030 μ g/mg of piperacillin ($C_{23}H_{27}N_5O_7S$), calculated on the anhydrous basis.

IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197K](#)

ASSAY

• PROCEDURE

Mobile phase: Methanol, water, 0.2 M monobasic sodium phosphate, and 0.4 M tetrabutylammonium hydroxide (450:447:100:3). Adjust with phosphoric acid to a pH of 5.50.

System suitability solution: 0.1 mg/mL of [USP Ampicillin RS](#) and 0.2 mg/mL of [USP Piperacillin RS](#) in *Mobile phase*

Standard solution: 0.4 mg/mL of [USP Piperacillin RS](#) in *Mobile phase*. Dissolve in a few drops of methanol, and dilute with *Mobile phase* to volume. Use this solution within 1 h.

Sample solution: 0.4 mg/mL of Piperacillin in *Mobile phase*. Dissolve in a few drops of methanol, and dilute with *Mobile phase* to volume. Use this solution within 1 h.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing L1

Flow rate: 1 mL/min

Injection volume: 10 μ L

System suitability

Samples: System suitability solution and Standard solution

[NOTE—See [Table 1](#) for the relative retention times.]

Suitability requirements

Resolution: NLT 16 between ampicillin and piperacillin, System suitability solution

Tailing factor: NMT 1.2 for the piperacillin peak, System suitability solution

Relative standard deviation: NMT 2%, Standard solution

Analysis**Samples:** Standard solution and Sample solutionCalculate the potency of piperacillin ($C_{23}H_{27}N_5O_7S$) in the portion of Piperacillin taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times P$$

 r_U = peak response from the Sample solution r_S = peak response from the Standard solution C_S = concentration of [USP Piperacillin RS](#) in the Standard solution (mg/mL) C_U = concentration of the Sample solution (mg/mL) P = potency of piperacillin in [USP Piperacillin RS](#) (μg/mg)**Acceptance criteria:** 960–1030 μg/mg on the anhydrous basis**IMPURITIES**• **AMPICILLIN, PIPERACILLIN PENICILLOIC ACID, PIPERACILLIN RELATED COMPOUND E, AND ACETYLATED PENICILLOIC ACID OF PIPERACILLIN****Mobile phase, Sample solution, Chromatographic system, and System suitability:** Proceed as directed in the Assay.**Standard solution 1:** 0.08 mg/mL of [USP Ampicillin RS](#) in Mobile phase**Standard solution 2:** 0.04 mg/mL of [USP Piperacillin RS](#) in Mobile phase. Dissolve in a few drops of methanol, and dilute with Mobile phase to volume. Use this solution within 1 h.**Analysis****Samples:** Standard solution 1, Standard solution 2, and Sample solution

Calculate the percentage of ampicillin in the portion of Piperacillin taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times P \times F \times 100$$

 r_U = peak response of ampicillin from the Sample solution r_S = peak response of ampicillin from Standard solution 1 C_S = concentration of [USP Ampicillin RS](#) in Standard solution 1 (mg/mL) C_U = concentration of the Sample solution (mg/mL) P = potency of ampicillin in [USP Ampicillin RS](#) (μg/mg) F = conversion factor, 0.001 mg/μg

Calculate the percentages of specified impurities other than ampicillin in the portion of Piperacillin taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times P \times (1/F_1) \times F_2 \times 100$$

 r_U = peak response of each specified impurity other than ampicillin from the Sample solution r_S = peak response of piperacillin from Standard solution 2 C_S = concentration of [USP Piperacillin RS](#) in Standard solution 2 (mg/mL) C_U = concentration of the Sample solution (mg/mL) P = potency of piperacillin in [USP Piperacillin RS](#) (μg/mg) F_1 = relative response factor (see [Table 1](#)) F_2 = conversion factor, 0.001 mg/μg**Acceptance criteria:** See [Table 1](#).**Table 1**

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Piperacillin related compound E ^a	0.24	2.4	0.2
Ampicillin	0.31	1.0	0.2
Acetylated penicilloic acid of piperacillin ^b	0.37	1.1	0.4
Piperacillin penicilloic acid ^c	0.62	0.7	1.0
Piperacillin	1.0	—	—

^a 1-Ethyl-2,3-piperazinedione.

^b (2R,4S)-3-Acetyl-2-((1R)-carboxy[2-(4-ethyl-2,3-dioxopiperazine-1-carboxamido)-2-phenylacetamido]methyl)-5,5-dimethylthiazolidine-4-carboxylic acid.

^c (2R,4S)-2-((1R)-Carboxy[2-(4-ethyl-2,3-dioxopiperazine-1-carboxamido)-2-phenylacetamido]methyl)-5,5-dimethylthiazolidine-4-carboxylic acid.

• **PIPERACILLINYLAMPICILLIN**

Mobile phase: Methanol, water, 0.2 M monobasic sodium phosphate, and 0.4 M tetrabutylammonium hydroxide (615:282:100:3). Adjust with phosphoric acid to a pH of 5.50.

Standard solution: 0.04 mg/mL of [USP Piperacillin RS](#) in *Mobile phase*. Dissolve in a few drops of methanol, and dilute with *Mobile phase* to volume. Use this solution within 1 h.

Sample solution: 0.4 mg/mL of Piperacillin in *Mobile phase*. Dissolve in a few drops of methanol, and dilute with *Mobile phase* to volume. Use this solution within 1 h.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 25-cm; 5-μm packing L1

Flow rate: 1 mL/min

Injection volume: 10 μL

System suitability

Sample: Standard solution

[NOTE—See [Table 2](#) for the relative retention times.]

Suitability requirements

Relative standard deviation: NMT 2%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of piperacillinylampicillin in the portion of Piperacillin taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times P \times (1/F_1) \times F_2 \times 100$$

r_U = peak response of piperacillinylampicillin from the *Sample solution*

r_S = peak response of piperacillin from the *Standard solution*

C_S = concentration of [USP Piperacillin RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of the *Sample solution* (mg/mL)

P = potency of piperacillin in [USP Piperacillin RS](#) (μg/mg)

F_1 = relative response factor (see [Table 2](#))

F_2 = conversion factor, 0.001 mg/μg

Acceptance criteria: See [Table 2](#).

Table 2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Piperacillin	1.0	—	—
Piperacillinyampicillin ^a	2.55	0.7	2.0
Total impurities ^b	—	—	3.8

^a (2S,5R,6R)-6-((R)-2-((2S,5R,6R)-6-[(R)-2-(4-Ethyl-2,3-dioxopiperazine-1-carboxamido)-2-phenylacetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxamido)-2-phenylacetamido)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid.

^b Total impurities is the sum of all impurities reported in the tests for *Ampicillin*, *Piperacillin Penicilloic Acid*, *Piperacillin Related Compound E*, and *Acetylated Penicilloic Acid of Piperacillin*, and *Piperacillinyampicillin*.

SPECIFIC TESTS

• [WATER DETERMINATION, Method I \(921\)](#): 2.0%–4.0%

• [OPTICAL ROTATION, Specific Rotation \(781S\)](#)

Sample solution: 40 mg/mL in methanol

Acceptance criteria: +155° to +175°

• [BACTERIAL ENDOTOXINS TEST \(85\)](#): Where the label states that Piperacillin is sterile or that it must be subjected to further processing during the preparation of injectable dosage forms, it contains NMT 0.07 USP Endotoxin Unit/mg of piperacillin.

Change to read:

• [STERILITY TESTS \(71\)](#): ▲ Where the label states that Piperacillin is sterile, it meets the requirements when tested as directed in *Test for Sterility of the Product to Be Examined, Membrane Filtration*. ▲ (ERR 1-Aug-2023)

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in well-closed containers.

• **LABELING:** Where it is intended for use in preparing injectable dosage forms, the label states that it is sterile or must be subjected to further processing during the preparation of injectable dosage forms.

• [USP REFERENCE STANDARDS \(11\)](#)

[USP Ampicillin RS](#)

[USP Piperacillin RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
PIPERACILLIN	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 45(5)

Current DocID: GUID-E4F23E9B-3A4D-4730-A017-FCF421A250AF_5_en-US

DOI: https://doi.org/10.31003/USPNF_M65205_05_01

DOI ref: [n7czl](#)