

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-D52B167D-4DB3-4D6E-B773-7C32F161E156_4_en-US
 DOI: https://doi.org/10.31003/USPNF_M1419_04_01
 DOI Ref: 708f5

© 2025 USPC
 Do not distribute

Pioglitazone Hydrochloride

$C_{19}H_{20}N_2O_3S \cdot HCl$ 392.90

2,4-Thiazolidinedione, 5-[[4-[2-(5-ethyl-2-pyridinyl)ethoxy]phenyl]methyl]-, monohydrochloride, (\pm)-;

(\pm)-5-[*p*-[2-(5-Ethyl-2-pyridyl)ethoxy]benzyl]-2,4-thiazolidinedione monohydrochloride CAS RN[®]: 112529-15-4; UNII: JQT35NPK6C.

DEFINITION

Pioglitazone Hydrochloride contains NLT 98.0% and NMT 102.0% of $C_{19}H_{20}N_2O_3S \cdot HCl$, calculated on the anhydrous basis.

IDENTIFICATION

Change to read:

- A. **[▲ SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197K](#)** ▲ (CN 1-MAY-2020)
- B. **[IDENTIFICATION TESTS—GENERAL, Chloride\(191\)](#)**: Dissolve 25 mg of Pioglitazone Hydrochloride in 0.5 mL of nitric acid, and add 2 mL of dilute nitric acid. It meets the requirements of the test for *Chloride*.
- C. The retention time of the pioglitazone peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Mobile phase: Acetonitrile, 0.1 M ammonium acetate, and glacial acetic acid (25:25:1)

Standard solution: Prepare a 0.5 mg/mL solution of [USP Pioglitazone Hydrochloride RS](#) in methanol, and dilute with *Mobile phase* to obtain a solution containing 50 μ g/mL of pioglitazone hydrochloride.

System suitability stock solution: 0.5 mg/mL of [USP Pioglitazone Hydrochloride RS](#) and 0.13 mg/mL of benzophenone in methanol

System suitability solution: Dilute *System suitability stock solution* with *Mobile phase* to obtain a solution containing 50 μ g/mL of pioglitazone hydrochloride and 13 μ g/mL of benzophenone.

Sample solution: Prepare a 0.5 mg/mL solution of pioglitazone hydrochloride in methanol, and dilute with *Mobile phase* to obtain a solution containing 50 μ g/mL of pioglitazone hydrochloride.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 269 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing L1

Column temperature: 25 \pm 2.5°

Flow rate: 0.7 mL/min

[**NOTE**—Adjust the flow rate so that the retention time of the pioglitazone peak is about 7 min.]

Injection size: 20 μ L

System suitability

Samples: *System suitability solution* and *Standard solution*

[**NOTE**—The approximate relative retention times for pioglitazone and benzophenone are 1.0 and 2.6, respectively.]

Suitability requirements

Tailing factor: NMT 1.5 for pioglitazone and benzophenone, *System suitability solution*

Resolution: NLT 15 between pioglitazone and benzophenone, *System suitability solution*

Relative standard deviation: NMT 2.0% for six replicate injections, *Standard solution*

Analysis**Samples:** Standard solution and Sample solution

Calculate the percentage of $C_{19}H_{20}N_2O_3S \cdot HCl$ in the portion of Pioglitazone Hydrochloride taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response from the Sample solution

r_S = peak response from the Standard solution

C_S = concentration of [USP Pioglitazone Hydrochloride RS](#) in the Standard solution ($\mu\text{g/mL}$)

C_U = concentration of Pioglitazone Hydrochloride in the Sample solution ($\mu\text{g/mL}$)

Acceptance criteria: 98.0%–102.0% on the anhydrous basis

IMPURITIES**INORGANIC IMPURITIES**

- [RESIDUE ON IGNITION \(281\)](#): NMT 0.1%

ORGANIC IMPURITIES

- **PROCEDURE**

Mobile phase and System suitability stock solution: Proceed as directed in the Assay.

System suitability solution: Dilute the System suitability stock solution with Mobile phase to obtain a solution containing 25 $\mu\text{g/mL}$ of pioglitazone hydrochloride and 6.5 $\mu\text{g/mL}$ of benzophenone.

Sample solution: 0.2 mg/mL of pioglitazone hydrochloride dissolved in 20% of the final volume with methanol, then diluted with Mobile phase to final volume

Standard solution: 1 $\mu\text{g/mL}$ of pioglitazone hydrochloride prepared by diluting the Sample solution with Mobile phase

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 269 nm

Column: 4.6-mm \times 15-cm; 5- μm packing L1

Column temperature: 25 \pm 2.5°

Flow rate: 0.7 mL/min

[NOTE—Adjust the flow rate so that the retention time of the pioglitazone peak is about 7 min.]

Injection size: 40 μL

Run time: At least four times the retention time of pioglitazone

System suitability

Samples: System suitability solution and Standard solution

Suitability requirements

Tailing factor: NMT 1.5 for pioglitazone and benzophenone, System suitability solution

Resolution: NLT 15 between pioglitazone and benzophenone, System suitability solution

Relative standard deviation: NMT 3.0%, Standard solution

Analysis**Samples:** Standard solution and Sample solution

Calculate the percentage of each impurity in the portion of Pioglitazone Hydrochloride taken:

$$\text{Result} = (r_U/r_S) \times D \times 100$$

r_U = peak response of each individual impurity from the Sample solution

r_S = peak response of pioglitazone from the Standard solution

D = dilution factor used to prepare the Standard solution, 0.005

Acceptance criteria

Individual impurities: See [Impurity Table 1](#).

Total impurities: NMT 0.5%**Impurity Table 1**

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Hydroxypioglitazone ^a	0.7	0.15
Pioglitazone	1.0	—
Didehydropioglitazone ^b	1.4	0.15
N-Alkylpioglitazone ^c	3.0	0.15
Any other individual impurity	—	0.10

^a (±)-5-{4-[2-(5-Ethylpyridin-2-yl)ethoxy]benzyl}-5-hydroxythiazolidine-2,4-dione.^b (Z)-5-{4-[2-(5-Ethylpyridin-2-yl)ethoxy]benzylidene}thiazolidine-2,4-dione.^c (±)-5-{4-[2-(5-Ethylpyridin-2-yl)ethoxy]benzyl}-3-[2-(5-ethylpyridin-2-yl)ethyl]thiazolidine-2,4-dione.**SPECIFIC TESTS**

- [WATER DETERMINATION, Method Ic\(921\)](#): NMT 0.5%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed containers, and store at room temperature.

- [USP REFERENCE STANDARDS \(11\)](#).

[USP Pioglitazone Hydrochloride RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
PIOGLITAZONE HYDROCHLORIDE	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 36(1)

Current DocID: [GUID-D52B167D-4DB3-4D6E-B773-7C32F161E156_4_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M1419_04_01

DOI ref: [708f5](#)