

Status: Currently Official on 16-Feb-2025

Official Date: Official as of 01-May-2020

Document Type: USP Monographs

DocId: GUID-BFCB3E52-C354-45A3-8CDA-5C1255DD41BE_4_en-US

DOI: https://doi.org/10.31003/USPNF_M1996_04_01

DOI Ref: qj4in

© 2025 USPC

Do not distribute

Pioglitazone and Metformin Hydrochloride Tablets

DEFINITION

Pioglitazone and Metformin Hydrochloride Tablets contain an amount of pioglitazone hydrochloride ($C_{19}H_{20}N_2O_3S \cdot HCl$) equivalent to NLT 95.0% and NMT 105.0% of the labeled amount of pioglitazone ($C_{19}H_{20}N_2O_3S$), and NLT 95.0% and NMT 105.0% of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCl$).

IDENTIFICATION

Change to read:

- A. **SPECTROSCOPIC IDENTIFICATION TESTS (197), Ultraviolet-Visible Spectroscopy: 197U** (CN 1-MAY-2020)

[NOTE—The UV spectra of the major peaks of the *Sample solution* and the *Standard solution* as obtained in the Assay may also be used to meet the Acceptance criteria.]

Pioglitazone

Sample solution: Transfer a quantity of finely powdered Tablets to a suitable container, and add water to obtain a final concentration of about 0.03 mg/mL of pioglitazone. Sonicate for about 30 s. Pass through a 5-mL portion of the resulting suspension using a suitable filter of 0.45- μ m pore size, then wash the filter with 10 mL of water, and discard the filtrate. Wash the filter with 5 mL of 0.1 N hydrochloric acid, and use the filtrate.

Acceptance criteria: The UV absorption spectrum exhibits a maximum between 265 and 271 nm.

Metformin hydrochloride

Sample solution: Transfer a quantity of finely powdered Tablets to a suitable container, and add a suitable quantity of water, based on the labeled amount of metformin hydrochloride in the sample, to obtain a final concentration of about 0.4 mg/mL of metformin hydrochloride. Sonicate for about 30 s, and pass through a suitable filter of 0.45- μ m pore size, discarding the first few mL of filtrate. Dilute a portion of the filtrate with water to obtain a solution containing about 8 μ g/mL of metformin hydrochloride.

Acceptance criteria: The UV absorption spectrum exhibits a maximum between 230 and 235 nm.

- B. The retention times of the pioglitazone and metformin peaks of the *Sample solution* correspond to those of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Mobile phase: 7.2 g/L of sodium dodecyl sulfate in a mixture of 0.05 M monobasic ammonium phosphate and acetonitrile (1:1)

Diluent: Methanol and 0.1 N hydrochloric acid (1:1)

System suitability stock solution: 0.5 mg/mL of p-methoxyacetophenone and 0.4 mg/mL of butylparaben in *Diluent*

Pioglitazone standard stock solution: 0.84 mg/mL of USP Pioglitazone Hydrochloride RS in *Diluent*

Mixed standard stock solution: 2.5 mg/mL of USP Metformin Hydrochloride RS and 0.084 mg/mL of USP Pioglitazone Hydrochloride RS in 0.1 N hydrochloric acid from the *Pioglitazone standard stock solution*

System suitability solution: Transfer 10.0 mL of the *Mixed standard stock solution* and 5.0 mL of the *System suitability stock solution* to a 50-mL volumetric flask, and dilute with 0.1 N hydrochloric acid to volume.

Standard solution: 16.8 μ g/mL of USP Pioglitazone Hydrochloride RS and 0.5 mg/mL of USP Metformin Hydrochloride RS in 0.1 N hydrochloric acid from the *Mixed standard stock solution*

Sample stock solution: Weigh and finely powder NLT 10 Tablets. Transfer an amount of powdered Tablets, equivalent to about 15 mg of pioglitazone, to a 200-mL volumetric flask. Add 120 mL of 0.1 N hydrochloric acid, shake for about 30 min, and then sonicate for about 5 min. Dilute with 0.1 N hydrochloric acid to volume, and mix well. Pass through a suitable filter of 0.45- μ m pore size, discarding the first few mL of filtrate.

Sample solution: Transfer a suitable volume of the *Sample stock solution* (see Table 1) to a 50-mL volumetric flask, and dilute with 0.1 N hydrochloric acid to volume.

Table 1

Labeled Amount of Pioglitazone and Metformin Hydrochloride (mg/Tablet)	Volume of Sample Stock Solution Used to Prepare the Sample Solution (mL)	Nominal Concentrations in the Sample Solution	
		Pioglitazone (µg/mL)	Metformin Hydrochloride (mg/mL)
15 and 500	10	15	0.5
15 and 850	5	7.5	0.425

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 255 nm for metformin and *p*-methoxyacetophenone; UV 225 nm for pioglitazone and butylparaben. If this procedure is used for *Identification A*, use a diode-array detector set at 200–400 nm.

Column: 6.0-mm × 15-cm; 5-µm packing [L7](#)

Column temperature: 25 ± 5°

Flow rate: 1 mL/min. [NOTE—The flow rate may be adjusted to achieve the retention time of the metformin peak of about 5 min.]

Injection volume: 10 µL

System suitability

Samples: System suitability solution and Standard solution

[NOTE—See [Table 2](#) for the approximate relative retention times.]

Table 2

Name	Relative Retention Time
Metformin	1.0
<i>p</i> -Methoxyacetophenone	1.2
Pioglitazone	1.8
Butylparaben	2.1

Suitability requirements

Resolution: NLT 2.5 between metformin and *p*-methoxyacetophenone; NLT 2.5 between pioglitazone and butylparaben, *System suitability solution*

Relative standard deviation: NMT 1.0% for the metformin peak; NMT 1.0% for pioglitazone peak, *Standard solution*

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of pioglitazone ($C_{19}H_{20}N_2O_3S$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak response of pioglitazone from the *Sample solution*

r_S = peak response of pioglitazone from the *Standard solution*

C_S = concentration of [USP Pioglitazone Hydrochloride RS](#) in the *Standard solution* (µg/mL)

C_U = nominal concentration of pioglitazone in the *Sample solution* (µg/mL)

M_{r1} = molecular weight of pioglitazone, 356.44

M_{r2} = molecular weight of pioglitazone hydrochloride, 392.90

Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCl$) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of metformin from the *Sample solution*

r_s = peak response of metformin from the *Standard solution*

C_s = concentration of [USP Metformin Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of metformin hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: 95.0%–105.0% for each of the labeled amounts of pioglitazone and metformin hydrochloride

PERFORMANCE TESTS

- [Dissolution \(711\)](#)

Test 1

Medium: pH 2.5 McIlvaine buffer (could be prepared by adjusting 0.1 M [citric acid](#) with 0.2 M [dibasic sodium phosphate](#) to a pH of 2.5); 900 mL

Apparatus 2: 50 rpm

Time: 30 min

Diluent and Mobile phase: Proceed as directed in the Assay.

Pioglitazone standard stock solution: 0.37 mg/mL of [USP Pioglitazone Hydrochloride RS](#) in *Diluent*

Standard solution: 0.0185 mg/mL of [USP Pioglitazone Hydrochloride RS](#) from the *Pioglitazone standard stock solution* and ($L/900$) mg/mL of [USP Metformin Hydrochloride RS](#) in *Medium*, where L is the label claim, in mg/Tablet, of metformin hydrochloride

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size.

Chromatographic system: Proceed as directed in the Assay, except use an *Injection volume* of 5 μ L.

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.5 for the metformin peak; NMT 2.0 for the pioglitazone peak

Relative standard deviation: NMT 2.0% for the metformin peak; NMT 2.0% for the pioglitazone peak

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of pioglitazone ($C_{19}H_{20}N_2O_3S$) dissolved:

$$\text{Result} = (r_u/r_s) \times (C_s/L) \times V \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response of pioglitazone from the *Sample solution*

r_s = peak response of pioglitazone from the *Standard solution*

C_s = concentration of [USP Pioglitazone Hydrochloride RS](#) in the *Standard solution* (mg/mL)

L = label claim of pioglitazone (mg/Tablet)

V = volume of *Medium*, 900 mL

M_{r1} = molecular weight of pioglitazone, 356.44

M_{r2} = molecular weight of pioglitazone hydrochloride, 392.90

Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCl$) dissolved:

$$\text{Result} = (r_u/r_s) \times (C_s/L) \times V \times 100$$

r_u = peak response of metformin hydrochloride from the *Sample solution*

r_s = peak response of metformin hydrochloride from the *Standard solution*

C_s = concentration of [USP Metformin Hydrochloride RS](#) in the *Standard solution* (mg/mL)

L = label claim of metformin hydrochloride (mg/Tablet)

V = volume of *Medium*, 900 mL

Tolerances: NLT 80% (Q) of the labeled amount of pioglitazone ($C_{19}H_{20}N_2O_3S$) is dissolved; NLT 80% (Q) of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCl$) is dissolved.

Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*.

Medium: pH 2.5 McIlvaine buffer (could be prepared by adjusting 0.1 M [citric acid](#) with 0.2 M [dibasic sodium phosphate](#) to a pH of 2.5); 900 mL

Apparatus 2: 50 rpm

Time: 45 min

Solution A: 1.4 g/L of [dibasic sodium phosphate anhydrous](#) and 1.4 g/L of [sodium dodecyl sulfate](#) in [water](#)

Solution B: [Phosphoric acid](#) and [water](#) (50:50)

Mobile phase: Acetonitrile and *Solution A* (34:66). Adjust with *Solution B* to a pH of 7.1.

Diluent A: Acetonitrile and *Medium* (50:50)

Diluent B: Acetonitrile and [water](#) (70:30)

Pioglitazone standard stock solution: 0.019 mg/mL of [USP Pioglitazone Hydrochloride RS](#) in *Diluent B*. Sonicate as needed to dissolve.

Metformin standard stock solution: 0.92 mg/mL of [USP Metformin Hydrochloride RS](#) in *Medium*. Sonicate as needed to dissolve.

Standard solution: 0.003 mg/mL of [USP Pioglitazone Hydrochloride RS](#) from the *Pioglitazone standard stock solution* and 0.11 mg/mL of [USP Metformin Hydrochloride RS](#) from the *Metformin standard stock solution* in *Diluent A*

Sample solution: Pass a portion of the solution under test through a suitable filter and dilute with *Diluent A* to a metformin concentration that is similar to the *Standard solution*.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 225 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing [L1](#)

Temperatures

Autosampler: 5°

Column: 40°

Flow rate: 1 mL/min

Injection volume: 15 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: 0.8–2.0 for the metformin peak; 0.8–2.0 for the pioglitazone peak

Relative standard deviation: NMT 2.0% for the metformin peak; NMT 2.5% for the pioglitazone peak

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of pioglitazone ($C_{19}H_{20}N_2O_3S$) dissolved:

$$\text{Result} = (r_u/r_s) \times (C_s/L) \times V \times D \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response of pioglitazone from the *Sample solution*

r_s = peak response of pioglitazone from the *Standard solution*

C_s = concentration of [USP Pioglitazone Hydrochloride RS](#) in the *Standard solution* (mg/mL)

L = label claim of pioglitazone (mg/Tablet)

V = volume of *Medium*, 900 mL

D = dilution factor of the *Sample solution*

M_{r1} = molecular weight of pioglitazone, 356.44

M_{r2} = molecular weight of pioglitazone hydrochloride, 392.90

Calculate the percentage of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCl$) dissolved:

$$\text{Result} = (r_U/r_S) \times (C_S/L) \times V \times D \times 100$$

r_U = peak response of metformin hydrochloride from the *Sample solution*

r_S = peak response of metformin hydrochloride from the *Standard solution*

C_S = concentration of [USP Metformin Hydrochloride RS](#) in the *Standard solution* (mg/mL)

L = label claim of metformin hydrochloride (mg/Tablet)

V = volume of *Medium*, 900 mL

D = dilution factor of the *Sample solution*

Tolerances: NLT 80% (Q) of the labeled amount of pioglitazone ($C_{19}H_{20}N_2O_3S$) is dissolved; NLT 80% (Q) of the labeled amount of metformin hydrochloride ($C_4H_{11}N_5 \cdot HCl$) is dissolved.

- [Uniformity of Dosage Units \(905\)](#), *Content Uniformity*: Meet the requirements for pioglitazone and metformin hydrochloride

IMPURITIES

• ORGANIC IMPURITIES: PIOLITAZONE

Mobile phase: Acetonitrile, 0.1 M [ammonium acetate](#), and [glacial acetic acid](#) (25:25:1)

Diluent: Methanol and [0.1 N hydrochloric acid](#) (1:1)

Standard stock solution: 0.2 mg/mL of [USP Pioglitazone Hydrochloride RS](#), dissolved first in methanol using 20% of the final volume, then diluted with *Mobile phase* to volume

System suitability solution: Prepare a solution containing 0.3 mg/mL of [benzophenone](#) in methanol. Transfer 1.0 mL of this solution to a 50-mL volumetric flask, add 5.0 mL of the *Standard stock solution*, and dilute with *Mobile phase* to volume. This solution contains 20 µg/mL of [USP Pioglitazone Hydrochloride RS](#) and 6 µg/mL of benzophenone.

Standard solution: 1 µg/mL of [USP Pioglitazone Hydrochloride RS](#) in *Mobile phase* from the *Standard stock solution*

Sample solution: Weigh and finely powder 10 Tablets. Transfer an amount of powdered Tablets, equivalent to about 18 mg of pioglitazone, to a 100-mL volumetric flask, and add 50 mL of *Diluent*. Shake for 30 min, and dilute with *Mobile phase* to volume. Pass through a suitable filter of 0.45-µm pore size, discarding the first few mL of filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 269 nm

Column: 4.6-mm × 15-cm; 5-µm packing [L1](#)

Column temperature: 25 ± 5°

Flow rate: 0.8 mL/min. [Note—The flow rate may be adjusted to achieve the retention time of the pioglitazone peak of about 7 min.]

Injection volume: 40 µL

Run time: At least 4 times the retention time of the pioglitazone peak

System suitability

Samples: *System suitability solution* and *Standard solution*

[Note—Elution order is the pioglitazone peak followed by benzophenone.]

Suitability requirements

Resolution: NLT 10 between pioglitazone and benzophenone, *System suitability solution*

Tailing factor: NMT 1.5 for the pioglitazone peak, *System suitability solution*

Relative standard deviation: NMT 5.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of each pioglitazone related impurity in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response of each individual impurity from the *Sample solution*
 r_s = peak response of pioglitazone from the *Standard solution*
 C_s = concentration of [USP Pioglitazone Hydrochloride RS](#) in the *Standard solution* ($\mu\text{g/mL}$)
 C_u = nominal concentration of pioglitazone in the *Sample solution* ($\mu\text{g/mL}$)
 M_{r1} = molecular weight of pioglitazone, 356.44
 M_{r2} = molecular weight of pioglitazone hydrochloride, 392.90

Acceptance criteria

Any individual pioglitazone related impurity: NMT 0.2%

Total pioglitazone related impurities: NMT 0.6%

[NOTE—Disregard the peaks due to metformin and its impurities that elute before 4.5 min, corresponding to the relative retention time of the pioglitazone peak of about 0.64.]

• ORGANIC IMPURITIES: METFORMIN

Solution A: 1.74 g of [sodium 1-pentanesulfonate](#) and 1.15 g of [monobasic ammonium phosphate](#) in 1000 mL of [water](#)

Solution B: Acetonitrile and [water](#) (7:3)

Mobile phase: See [Table 3](#).

Table 3

Time (min)	Solution A (%)	Solution B (%)
0	100	0
15	70	30
15.1	0	100
25	0	100
25.1	100	0
35	100	0

System suitability solution: 5 $\mu\text{g/mL}$ of [USP Metformin Hydrochloride RS](#) and 2 $\mu\text{g/mL}$ of [melamine](#) in [water](#)

Standard solution: 5 $\mu\text{g/mL}$ of [USP Metformin Hydrochloride RS](#) in [water](#)

Sample solution: Accurately weigh 10 Tablets, and finely powder. Transfer an amount of powdered Tablets, equivalent to about 100 mg of metformin hydrochloride, to a 100-mL volumetric flask, and add 50 mL of [water](#). Shake for 30 min. Dilute with [water](#) to volume, and pass through a suitable filter of 0.45- μm pore size, discarding the first few mL of filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm \times 15-cm; 5- μm packing [L62](#)

Column temperature: $25 \pm 5^\circ\text{C}$

Flow rate: 1.0 mL/min. [NOTE—The flow rate may be adjusted to achieve the retention time of the metformin peak of about 8 min.]

Run time: 15 min

Injection volume: 20 μL

System suitability

Samples: *System suitability solution* and *Standard solution*

[NOTE—The relative retention times for melamine and metformin are about 0.9 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 4 between melamine and metformin hydrochloride, *System suitability solution*

Tailing factor: NMT 1.5 for the metformin hydrochloride peak, *System suitability solution*

Relative standard deviation: NMT 5.0%, Standard solution**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of each metformin hydrochloride related impurity in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of each individual impurity from the Sample solution r_S = peak response of metformin hydrochloride from the Standard solution C_S = concentration of [USP Metformin Hydrochloride RS](#) in the Standard solution (µg/mL) C_U = nominal concentration of metformin hydrochloride in the Sample solution (µg/mL)**Acceptance criteria****Any individual impurity:** NMT 0.1%**Total impurities:** NMT 0.5%**ADDITIONAL REQUIREMENTS**

- **PACKAGING AND STORAGE:** Preserve in tight containers, and store at controlled room temperature.
- **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- **USP REFERENCE STANDARDS (11).**
[USP Metformin Hydrochloride RS](#)
[USP Pioglitazone Hydrochloride RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
PIOGLITAZONE AND METFORMIN HYDROCHLORIDE TABLETS	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 42(4)

Current DocID: GUID-BFCB3E52-C354-45A3-8CDA-5C1255DD41BE_4_en-US**DOI: https://doi.org/10.31003/USPNF_M1996_04_01****DOI ref: gj4in**