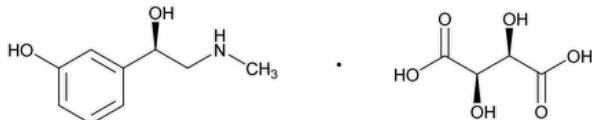


Status: Currently Official on 16-Feb-2025

Official Date: Official as of 01-May-2020

Document Type: USP Monographs

DocId: GUID-98826852-5369-4BA6-BB73-892CBBB26DDF_2_en-US


DOI: https://doi.org/10.31003/USPNF_M401_02_01

DOI Ref: 9nar5

© 2025 USPC

Do not distribute

Phenylephrine Bitartrate

 $C_9H_{13}NO_2 \cdot C_4H_6O_6$ 317.29Benzene methanol, 3-hydroxy- α -[(methylamino)methyl]-, (2R,3R)-2,3-dihydroxybutanedioate (1:1) (salt);(R)-(-)-m-Hydroxy- α -[(methylamino)methyl]benzyl alcohol hydrogen tartrate CAS RN®: 17162-39-9; UNII: 2703Q5ML57.

DEFINITION

Phenylephrine Bitartrate contains NLT 98.0% and NMT 102.0% of phenylephrine bitartrate ($C_9H_{13}NO_2 \cdot C_4H_6O_6$), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. **SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197K** ▲ (CN 1-MAY-2020)
- B. **IDENTIFICATION TESTS—GENERAL, Tartrate (191)**.

Sample: The alkaline filtrate from the test for Optical Rotation (781S), Specific Rotation**Acceptance criteria:** The **Sample** responds positively to the test for **Tartrate** in Identification Tests—General (191).

- C. The retention time of the major peak of the **Sample solution** corresponds to that of the **Standard solution**, as obtained in the **Assay**.

ASSAY

• PROCEDURE

Buffer: Dissolve 3.25 g of 1-octanesulfonic acid sodium salt monohydrate in 1 L of water, and adjust with 3 M phosphoric acid to a pH of 2.8.**Solution A:** Acetonitrile and **Buffer** (10:90)**Solution B:** Acetonitrile and **Buffer** (90:10)**Mobile phase:** See Table 1.**Table 1**

Time (min)	Solution A (%)	Solution B (%)
0	93	7
10	70	30
10.1	93	7
18	93	7

Diluent: **Solution A** and **Solution B** (80:20)**Standard solution:** 0.6 mg/mL of USP Phenylephrine Hydrochloride RS in **Diluent****Sample solution:** 0.9 mg/mL of Phenylephrine Bitartrate in **Diluent**

Chromatographic system

(See Chromatography (621), System Suitability.)**Mode:** LC**Detector:** UV 215 nm

Column: 4.0-mm × 5.5-cm; 3-μm packing L1**Column temperature:** 45°**Flow rate:** 1.5 mL/min**Injection volume:** 4 μL**System suitability****Sample:** Standard solution**Suitability requirements****Tailing factor:** NMT 1.9**Relative standard deviation:** NMT 0.73%**Analysis****Samples:** Standard solution and Sample solutionCalculate the percentage of phenylephrine bitartrate ($C_9H_{13}NO_2 \cdot C_4H_6O_6$) in the portion of Phenylephrine Bitartrate taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

 r_U = peak response of phenylephrine from the Sample solution r_S = peak response of phenylephrine from the Standard solution C_S = concentration of [USP Phenylephrine Hydrochloride RS](#) in the Standard solution (mg/mL) C_U = concentration of Phenylephrine Bitartrate in the Sample solution (mg/mL) M_{r1} = molecular weight of phenylephrine bitartrate, 317.29 M_{r2} = molecular weight of phenylephrine hydrochloride, 203.67**Acceptance criteria:** 98.0%–102.0% on the dried basis**IMPURITIES**• [RESIDUE ON IGNITION \(281\)](#): NMT 0.1%**ORGANIC IMPURITIES****Buffer, Solution A, Solution B, Mobile phase, and Diluent:** Proceed as directed in the Assay.**System suitability solution:** 1.0 mg/mL of [USP Phenylephrine Hydrochloride RS](#) and 0.9 μg/mL each of [USP Norphenylephrine Hydrochloride RS](#) and [USP Phenylephrine Related Compound C RS](#) in Diluent**Standard solution:** 0.001 mg/mL each of [USP Phenylephrine Hydrochloride RS](#), [USP Norphenylephrine Hydrochloride RS](#), [USP Phenylephrine Related Compound C RS](#), [USP Phenylephrine Related Compound D RS](#), and [USP Phenylephrine Related Compound E RS](#) in Diluent**Blank:** 0.8 mg/mL of L(+)-tartaric acid in Diluent**Sample solution:** 1.56 mg/mL of Phenylephrine Bitartrate in Diluent**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 215 nm**Column:** 4-mm × 5.5-cm; 3-μm packing L1**Column temperature:** 45°**Flow rate:** 1.5 mL/min**Injection volume:** 4 μL**System suitability****Samples:** System suitability solution and Standard solution**Suitability requirements****Resolution:** NLT 1.5 between norphenylephrine and phenylephrine and NLT 1.5 between phenylephrine and phenylephrine related compound C, System suitability solution**Relative standard deviation:** NMT 5% for norphenylephrine, phenylephrine, phenylephrine related compound C, phenylephrine related compound D, and phenylephrine related compound E, Standard solution**Analysis****Samples:** Standard solution, Blank, and Sample solution

Examine the chromatogram of the Blank for the peaks, and disregard any corresponding peaks observed in the chromatogram of the Sample solution.

Calculate the percentage of norphenylephrine as free base in the portion of Phenylephrine Bitartrate taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak response of norphenylephrine from the *Sample solution*

r_S = peak response of norphenylephrine from the *Standard solution*

C_S = concentration of [USP Norphenylephrine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Phenylephrine Bitartrate in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of norphenylephrine as free base, 153.18

M_{r2} = molecular weight of norphenylephrine as hydrochloride salt, 189.64

Calculate the percentage of phenylephrine related compound C as free base in the portion of Phenylephrine Bitartrate taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak response of phenylephrine related compound C from the *Sample solution*

r_S = peak response of phenylephrine related compound C from the *Standard solution*

C_S = concentration of [USP Phenylephrine Related Compound C RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Phenylephrine Bitartrate in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of phenylephrine related compound C as free base, 165.19

M_{r2} = molecular weight of phenylephrine related compound C as hydrochloride salt, 201.65

Calculate the percentage of phenylephrine related compound D in the portion of Phenylephrine Bitartrate taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of phenylephrine related compound D from the *Sample solution*

r_S = peak response of phenylephrine related compound D from the *Standard solution*

C_S = concentration of [USP Phenylephrine Related Compound D RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Phenylephrine Bitartrate in the *Sample solution* (mg/mL)

Calculate the percentage of phenylephrine related compound E as free base in the portion of Phenylephrine Bitartrate taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak response of phenylephrine related compound E from the *Sample solution*

r_S = peak response of phenylephrine related compound E from the *Standard solution*

C_S = concentration of [USP Phenylephrine Related Compound E RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Phenylephrine Bitartrate in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of phenylephrine related compound E as free base, 255.31

M_{r2} = molecular weight of phenylephrine related compound E as hydrochloride salt, 291.77

Calculate the percentage of any individual unspecified impurity in the portion of Phenylephrine Bitartrate taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak response of each unspecified impurity from the *Sample solution*

r_s = peak response of phenylephrine from the *Standard solution*

C_s = concentration of [USP Phenylephrine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Phenylephrine Bitartrate in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of phenylephrine bitartrate, 317.29

M_{r2} = molecular weight of phenylephrine hydrochloride, 203.67

Acceptance criteria: See [Table 2](#). Disregard any peaks below 0.05%.

Table 2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Norphenylephrine	0.9	0.2
Phenylephrine	1.0	—
Phenylephrine related compound C	1.2	0.1
Phenylephrine related compound D	2.9	0.2
Phenylephrine related compound E	3.1	0.1
Any individual unspecified impurity	—	0.1
Total impurities	—	0.5

SPECIFIC TESTS

• [OPTICAL ROTATION, Specific Rotation \(781S\)](#).

Sample solution: Prepare a solution of about 240 mg/mL of Phenylephrine Bitartrate in water. Make the solution slightly alkaline by adding concentrated ammonium hydroxide dropwise. Rub the wall of the vessel with a glass rod so that the base precipitates out. Filter the base under suction, wash with a little water and acetone, and dry at 105° for 2 h. Prepare and measure a 50-mg/mL solution of base precipitate in 1 M hydrochloric acid.

Acceptance criteria: -53° to -57°

• [pH \(791\)](#).

Sample solution: 10% w/v aqueous solution

Acceptance criteria: 3.0–4.0

• [LOSS ON DRYING \(731\)](#).

Analysis: Dry at 105° to a constant weight.

Acceptance criteria: NMT 0.5%

ADDITIONAL REQUIREMENTS

• [PACKAGING AND STORAGE:](#) Preserve in tight, light-resistant containers. Store at controlled room temperature.

• [USP REFERENCE STANDARDS \(11\)](#).

[USP Norphenylephrine Hydrochloride RS](#)

3-(2-Amino-1-hydroxyethyl)phenol hydrochloride.

$C_8H_{11}NO_2 \cdot HCl$ 189.64

[USP Phenylephrine Bitartrate RS](#)

[USP Phenylephrine Hydrochloride RS](#)

[USP Phenylephrine Related Compound C RS](#)

1-(3-Hydroxyphenyl)-2-(methylamino)ethan-1-one hydrochloride.

$C_9H_{11}NO_2 \cdot HCl$ 201.65

[USP Phenylephrine Related Compound D RS](#)

(R)-3-(2-[Benzyl(methyl)amino]-1-hydroxyethyl)phenol.

$C_{16}H_{19}NO_2$ 257.33

2-[Benzyl(methyl)amino]-1-(3-hydroxyphenyl)ethan-1-one hydrochloride.

 $C_{16}H_{17}NO_2 \cdot HCl$ 291.77**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
PHENYLEPHRINE BITARTRATE	Documentary Standards Support	SM22020 Small Molecules 2
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 40(2)

Current DocID: GUID-98826852-5369-4BA6-BB73-892CBBB26DDF_2_en-US**DOI: https://doi.org/10.31003/USPNF_M401_02_01****DOI ref: [9nar5](#)**