

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: NF Monographs
DocId: GUID-B1EE106D-3BFA-42B1-9C1C-448186ED3142_2_en-US
DOI: https://doi.org/10.31003/USPNF_M381_02_01
DOI Ref: 8t1pp

© 2025 USPC
Do not distribute

Phenoxyethanol

$C_8H_{10}O_2$ 138.16

2-Phenoxyethanol;
2-Phenoxyethyl alcohol;
Ethylene glycol, 2-monophenyl ether CAS RN®: 122-99-6.

DEFINITION

Phenoxyethanol contains NLT 98.0% and NMT 102.0% of phenoxyethanol ($C_8H_{10}O_2$).

IDENTIFICATION

Change to read:

- A. ▲ [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197F](#) ▲ (CN 1-MAY-2020) On an undried specimen

ASSAY

• PROCEDURE

Phenol solution, Standard solution, and Chromatographic system: Prepare as directed in the test for *Organic Impurities*.

Sample stock solution: 5 mg/mL of Phenoxyethanol in isopropyl alcohol

Sample solution: Transfer 500 μ L of the *Sample stock solution* to a vial, add 1000 μ L of isopropyl alcohol, crimp the vial, and mix on a vortex mixer for 15 s.

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of phenoxyethanol ($C_8H_{10}O_2$) in the portion of Phenoxyethanol taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of [USP Phenoxyethanol RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Phenoxyethanol in the *Sample solution* (mg/mL)

Acceptance criteria: 98.0%–102.0%

IMPURITIES

• ORGANIC IMPURITIES

Phenol solution: 0.25 mg/mL of phenol in isopropyl alcohol

Standard stock solution: 5 mg/mL of [USP Phenoxyethanol RS](#) in the *Phenol solution*

Standard solution: Transfer 500 μ L of the *Standard stock solution* to a vial, add 1000 μ L of isopropyl alcohol, crimp the vial, and mix on a vortex mixer for 15 s.

Sample solution: Transfer 500 μ L of Phenoxyethanol to a tared vial, and determine the weight of Phenoxyethanol taken. Add 1000 μ L of isopropyl alcohol, crimp the vial, and mix on a vortex mixer for 15 s.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)**Mode:** GC**Detector:** Flame ionization**Column:** 0.32-mm × 10-m capillary coated with a 5-μm film of stationary phase G27**Temperatures****Injection port:** 300°**Detector:** 300°**Column:** See [Table 1](#).**Table 1**

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
80	8	260	10

Carrier gas: Helium**Injection volume:** 1 μL**Injection type:** Split injection mode**Split flow rate:** 44 mL/min**System suitability****Sample:** Standard solution**Suitability requirements****Resolution:** NLT 10 between the phenol and phenoxyethanol peaks**Relative standard deviation:** NMT 2.0% for the phenoxyethanol peak**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of total impurities in the portion of Phenoxyethanol taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of all additional peak areas in the Sample solution, excluding the main peak, the solvent peak, and the phenol peak r_S = peak response of phenoxyethanol from the Standard solution C_S = concentration of phenoxyethanol in the Standard solution (mg/mL) C_U = concentration of the Sample solution (mg/mL)**Acceptance criteria:** NMT 1.0%**• LIMIT OF PHENOL****Phenol solution, Standard solution, Sample solution, and Chromatographic system:** Proceed as directed in the test for *Organic Impurities*.**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of phenol in the portion of Phenoxyethanol taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of phenol from the Sample solution r_S = peak response of phenol from the Standard solution C_S = concentration of phenol in the Standard solution (mg/mL) C_U = concentration of the Sample solution (mg/mL)**Acceptance criteria:** NMT 0.1%

SPECIFIC TESTS

- **SPECIFIC GRAVITY (841):** 1.105–1.110 at 20°

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers, and store in a cool, dry place, protected from light.
- **USP REFERENCE STANDARDS (11):**
[USP Phenoxyethanol RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
PHENOXYETHANOL	Documentary Standards Support	SE2020 Simple Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SE2020 Simple Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 31(3)

Current DocID: GUID-B1EE106D-3BFA-42B1-9C1C-448186ED3142_2_en-US

DOI: https://doi.org/10.31003/USPNF_M381_02_01

DOI ref: 8t1pp