

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-Dec-2016
 Document Type: USP Monographs
 DocId: GUID-D2923340-F975-4D9B-80C3-77CEAB9903F1_1_en-US
 DOI: https://doi.org/10.31003/USPNF_M6210_01_01
 DOI Ref: 9iu4s

© 2025 USPC
 Do not distribute

Pentoxifylline Compounded Oral Suspension

DEFINITION

Pentoxifylline Compounded Oral Suspension contains NLT 90.0% and NMT 110.0% of the labeled amount of pentoxifylline ($C_{13}H_{18}N_4O_3$).

Prepare Pentoxifylline Compounded Oral Suspension 20 mg/mL as follows (see [Pharmaceutical Compounding—Nonsterile Preparations \(795\)](#)).

Pentoxifylline extended-release tablets ^a equivalent to	2 g of pentoxifylline
Purified Water, <i>USP</i> , a sufficient quantity to make	100 mL

^a Trental 400-mg tablets, sanofi-aventis, Somerville, NJ.

Calculate the required quantity of each ingredient for the total amount to be prepared. Place the required number of *Pentoxifylline extended-release tablets* in a suitable mortar, add *Purified Water* in small portions, and triturate to make a smooth paste. Add increasing volumes of *Purified Water* to make a pentoxifylline liquid that is pourable. Transfer the contents of the mortar, stepwise and quantitatively, to a calibrated bottle. Add enough *Purified Water* to bring to final volume, and mix well.

ASSAY

• PROCEDURE

Solution A: 50 mM monobasic potassium phosphate buffer, adjusted with phosphoric acid to a pH of 3.2

Mobile phase: Acetonitrile and *Solution A* (20:80). Pass through a filter of 0.45- μ m pore size, and degas.

Internal standard solution: 100 μ g/mL of caffeine in *Mobile phase*

Standard stock solution: 20 mg/mL of [USP Pentoxifylline RS](#) in *Mobile phase*

Standard solution: Pipet 1.0 mL of *Standard stock solution* into a 15-mL conical centrifuge tube, and add 9 mL of deionized water. Mix the sample for 30 s in a vortex mixer, and centrifuge for 30 min at 1250 \times g. Pipet 50 μ L of the supernatant into a separate borosilicate culture tube, dilute with 575 μ L of *Mobile phase*, and add 625 μ L of *Internal standard solution* to obtain a solution having a nominal concentration of 80 μ g/mL of pentoxifylline and 50 μ g/mL of caffeine.

Sample solution: Shake thoroughly by hand each bottle of Oral Suspension. Pipet 1.0 mL of Oral Suspension into a 15-mL conical centrifuge tube, and add 9 mL of deionized water. Mix the sample for 30 s in a vortex mixer, and centrifuge for 30 min at 1250 \times g. Pipet 50 μ L of the supernatant into a separate borosilicate culture tube, dilute with 575 μ L of *Mobile phase*, and add 625 μ L of *Internal standard solution* to obtain a solution having a nominal concentration of 80 μ g/mL of pentoxifylline and 50 μ g/mL of caffeine.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 280 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing L1

Flow rate: 1.0 mL/min

Injection volume: 10 μ L

System suitability

Sample: *Standard solution*

[NOTE—The relative retention times for caffeine and pentoxifylline are about 0.42 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 10.0 between pentoxifylline and caffeine

Column efficiency: NLT 10,000 theoretical plates

Tailing factor: NMT 2.0 for the pentoxifylline peak

Relative standard deviation: NMT 2.0% for replicate injections**Analysis****Samples:** Standard solution and Sample solutionCalculate the percentage of the labeled amount of pentoxifylline ($C_{13}H_{18}N_4O_3$) in the portion of Oral Suspension taken:

$$\text{Result} = (R_U/R_S) \times (C_S/C_U) \times 100$$

 R_U = peak response ratio of pentoxifylline to the internal standard from the *Sample solution* R_S = peak response ratio of pentoxifylline to the internal standard from the *Standard solution* C_S = concentration of [USP Pentoxifylline RS](#) in the *Standard solution* ($\mu\text{g/mL}$) C_U = nominal concentration of pentoxifylline in the *Sample solution* ($\mu\text{g/mL}$)**Acceptance criteria:** 90.0%–110.0%**SPECIFIC TESTS**

- [pH \(791\)](#): 5.9–7.7

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Package in tight, light-resistant containers. Store in a refrigerator or at controlled room temperature.
- **Beyond-Use Date:** NMT 90 days after the date on which it was compounded, when stored in a refrigerator or at controlled room temperature
- **LABELING:** Label it to indicate that it is to be well shaken before use, and to state the *Beyond-Use Date*.
- [USP Reference Standards \(11\)](#)

[USP Pentoxifylline RS](#)**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
PENTOXIFYLLINE COMPOUNDED ORAL SUSPENSION	Brian Serumaga Science Program Manager	CMP2020 Compounding 2020
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	CMP2020 Compounding 2020

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 40(6)

Current DocID: [GUID-D2923340-F975-4D9B-80C3-77CEAB9903F1_1_en-US](#)**DOI:** https://doi.org/10.31003/USPNF_M6210_01_01**DOI ref:** [9iu4s](#)