

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-May-2018
Document Type: USP Monographs
DocId: GUID-77199959-62AE-4FEC-B13A-AC0C09EF3185_3_en-US
DOI: https://doi.org/10.31003/USPNF_M61105_03_01
DOI Ref: 2k355

© 2025 USPC
Do not distribute

Paricalcitol Injection

DEFINITION

Paricalcitol Injection is a sterile solution of Paricalcitol in a mixture of Water for Injection, Propylene Glycol, and Alcohol, or other suitable solvents. It contains NLT 90.0% and NMT 110.0% of the labeled amount of paricalcitol ($C_{27}H_{44}O_3$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

[NOTE—Protect paricalcitol solutions from light.]

Mobile phase: Methanol and water (4:1)

Diluent: Methanol and water (1:1)

Standard solution: Dilute [USP Paricalcitol Solution RS](#) with *Diluent* to obtain a solution having a concentration of paricalcitol similar to that of the Injection.

Sample solution: Use the Injection.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 252 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing L1

Flow rate: 2 mL/min

Injection volume: 100–200 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of paricalcitol ($C_{27}H_{44}O_3$) in the portion of Injection taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_S = concentration of paricalcitol in the *Standard solution*, calculated on the basis of the content of paricalcitol in the [USP Paricalcitol Solution RS](#) (μ g/mL)

C_U = nominal concentration of paricalcitol in the *Sample solution* (μ g/mL)

Acceptance criteria: 90.0%–110.0%

OTHER COMPONENTS

• CONTENT OF PROPYLENE GLYCOL AND ALCOHOL (if present)

Mobile phase: 0.01 N sulfuric acid solution, filtered and degassed

Alcohol stock solution: Transfer 2.0 mL of dehydrated alcohol to a 10-mL volumetric flask, and dilute with water to volume.

Propylene glycol stock solution: Transfer 3.0 mL of propylene glycol to a 10-mL volumetric flask, and dilute with water to volume.

Standard solution: Transfer 5.0 mL each of *Alcohol stock solution* and *Propylene glycol stock solution* to a 50-mL volumetric flask, and dilute with water to volume.

Sample solution: Transfer 5.0 mL of *Injection* to a 50-mL volumetric flask, and dilute with water to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Refractive index

Column: 7.8-mm × 30-cm; packing L17

Column temperature: 60°

Flow rate: 0.8 mL/min

Injection volume: 10 µL

System suitability

Sample: *Standard solution*

[NOTE—Elution order is propylene glycol followed by alcohol.]

Suitability requirements

Resolution: NLT 4.0 between propylene glycol and alcohol

Relative standard deviation: NMT 2.0% for each peak

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amounts of propylene glycol and alcohol in the portion of *Injection* taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of alcohol or propylene glycol from the *Sample solution*

r_S = peak response of alcohol or propylene glycol from the *Standard solution*

C_S = concentration of alcohol or propylene glycol in the *Alcohol stock solution* or *Propylene glycol stock solution* (% v/v)

C_U = nominal concentration of alcohol or propylene glycol (if present) in the *Injection* (% v/v)

Acceptance criteria

Alcohol: 80.0%–120.0%

Propylene glycol: 80.0%–120.0%

IMPURITIES

- [ALUMINUM \(206\)](#).

Diluent: Dilute 4 mL of nitric acid with water to 2000 mL.

Matrix modifier: 1.5 mg/mL of magnesium nitrate

Standard stock solution: Proceed as directed for *Standard preparations* in the chapter, beginning with “Treat some aluminum wire” and ending with “Cool, and transfer the solution, with the aid of water, to a 100-mL volumetric flask, and dilute with water to volume”. Transfer 2 mL of this solution to a second 100-mL volumetric flask, and dilute with water to volume. Transfer 2 mL of this solution to a third 100-mL volumetric flask, and dilute with water to volume. This solution contains 0.4 µg/mL of aluminum.

Standard solution A: 2.5 ng/mL of aluminum in *Diluent*, from the *Standard stock solution*

Standard solution B: 5.0 ng/mL of aluminum in *Diluent*, from the *Standard stock solution*

Standard solution C: 10 ng/mL of aluminum in *Diluent*, from the *Standard stock solution*

Standard solution D: 20 ng/mL of aluminum in *Diluent*, from the *Standard stock solution*

Standard solution E: 50 ng/mL of aluminum in *Diluent*, from the *Standard stock solution*

Sample solution: Dilute 4.0 mL of *Injection* with 6.0 mL of *Diluent*, or use an appropriate dilution to obtain a solution having a concentration of NMT 0.02 µg/mL of aluminum.

System suitability solution: Dilute 9.5 mL of the *Sample solution* with 0.5 mL of the *Standard stock solution*. If the resulting solution contains more than 0.04 µg/mL of aluminum, prepare an alternate dilution having a concentration of about 0.02–0.04 µg/mL of aluminum.

Instrumental conditions

(See [Atomic Absorption Spectroscopy \(852\)](#).)

Mode: Atomic absorption spectrophotometry; instrument equipped with a flameless, electrically heated furnace

Lamp: Aluminum hollow-cathode

Analytical wavelength: Aluminum emission line at 309.3 nm

Analysis

Samples: Standard solution A, Standard solution B, Standard solution C, Standard solution D, Standard solution E, Sample solution, and System suitability solution

Under typical conditions, the sample volume is 20 μ L, the volume of the *Matrix modifier* is 5 μ L, the injection temperature is 100°, and the oven conditions are as listed in *Table 1*. [NOTE—These conditions may be optimized for each instrument.]

Table 1

Step	Temperature
Drying 1	110°
Drying 2	130°
Drying 3	200°
Pyrolysis	1100°
Read	2300°
Clean out	2450°

Determine the absorbances of the samples. Plot the absorbances of the *Standard solutions* versus the content of aluminum, in ng/mL, drawing a straight line best fitting the five points. The correlation coefficient is NLT 0.995, the recovery for the *System suitability solution* is 80%–120%, and the duplicate injections must agree within 0.0024 μ g/mL. From the graph so obtained, determine the quantity of aluminum, C, in μ g, found in each mL of the *Sample solution*.

Calculate the quantity, in μ g/mL, of aluminum in the portion of Injection taken:

$$\text{Result} = C \times D$$

C = measured concentration of aluminum in the *Sample solution* (μ g/mL)

D = dilution factor used to prepare the *Sample solution*

Acceptance criteria: NMT 0.5 μ g/mL

• **ORGANIC IMPURITIES**

Diluent: Acetonitrile and water (1:1)

Solution A: Acetonitrile and water (15:85)

Solution B: Acetonitrile

Mobile phase: See *Table 2*.

Table 2

Time (min)	Solution A (%)	Solution B (%)
0	65	35
25	5	95
45	5	95

Return to the original conditions, and re-equilibrate the system.

Standard solution: Dilute [USP Paricalcitol Solution RS](#) with *Diluent* to obtain a solution having a concentration of paricalcitol equal to 0.5% of the labeled concentration of the Injection.

Degradation stock solution: Dilute 1 mL of [USP Paricalcitol Solution RS](#) with *Diluent* to 5 mL.

Degradation solution A: Transfer 1 mL of the *Degradation stock solution* and 0.1 mL of 30% hydrogen peroxide into a 10-mL container, and allow to stand at room temperature for 1 h. Dilute with *Diluent* to 10 mL, and mix.

Degradation solution B: Mix 1 mL of the *Degradation stock solution* and 1 mL of 0.1 N hydrochloric acid, and heat at 70° for 1 h. Cool to room temperature, dilute with *Diluent* to 10 mL, and mix.

Sample solution: Use the Injection.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 252 nm

Columns

Guard: 4.6-mm × 7.5-mm or 4.6-mm × 10-mm; packing L1

Analytical: 4.6-mm × 25-cm; 5-μm packing L1

Flow rate: 1 mL/min

Injection volume: 100–200 μL

System suitability

Samples: Standard solution and Degradation solution B

Suitability requirements

Resolution: NLT 1.0 between the paricalcitol peak and the related compound D peak, Degradation solution B

Relative standard deviation: NMT 5.0%, Standard solution

Analysis

Samples: Diluent, Degradation solution A, Degradation solution B, Standard solution, and Sample solution

Identify the impurities in the Sample solution on the basis of the relative retention times of the components of Degradation solution A and

Degradation solution B in [Table 3](#).

Table 3

Name ^a	Degradation Solution	Relative Retention Time	Acceptance Criteria, NMT (%)
Related compound A	A	0.63	1.0
Related compound B	A	0.79	1.0
Related compound C	B	0.89	1.0
Related compound D	B	0.95	1.0
Related compound E ^b	B	1.32	1.0
Related compound F	B	1.57	1.0
Related compound G	B	1.66	1.0
Related compound H	B	1.74	1.0
Related compound I	B	1.79	1.0
Total impurities	—	—	2.0

^a Related compounds A–I are specified unidentified degradation products. No information is available about chemical structures or chemical names for these impurities.

^b This peak is very small; the signal-to-noise ratio is approximately 3–5.

Calculate the percentage of each impurity in the portion of Injection taken:

$$\text{Result} = (r_U/r_S) \times C_S \times (100/L)$$

r_U = peak response of each impurity from the Sample solution

r_S = peak response of paricalcitol from the Standard solution

C_s = concentration of paricalcitol in the *Standard solution*, calculated on the basis of the content of paricalcitol in the [USP Paricalcitol Solution RS](#) ($\mu\text{g/mL}$)

L = labeled amount of paricalcitol in the *Injection* ($\mu\text{g/mL}$)

Acceptance criteria: See [Table 3](#). Disregard any peak observed in the *Diluent*.

SPECIFIC TESTS

- [BACTERIAL ENDOTOXINS TEST \(85\)](#): It contains NMT 10 USP Endotoxin Units/ μg of paricalcitol.
- [PARTICULATE MATTER IN INJECTIONS \(788\)](#): Meets the requirements for small-volume injections
- **OTHER REQUIREMENTS:** It meets the requirements under [Injections and Implanted Drug Products \(1\)](#).

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in single-dose or multi-dose containers, preferably of Type I glass. Store at controlled room temperature.
- [USP REFERENCE STANDARDS \(11\)](#)
[USP Paricalcitol Solution RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
PARICALCITOL INJECTION	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 38(4)

Current DocID: GUID-77199959-62AE-4FEC-B13A-AC0C09EF3185_3_en-US

Previous DocID: GUID-77199959-62AE-4FEC-B13A-AC0C09EF3185_1_en-US

DOI: https://doi.org/10.31003/USPNF_M61105_03_01

DOI ref: 2k355