

Status: Currently Official on 16-Feb-2025

Official Date: Official as of 01-May-2018

Document Type: USP Monographs

DocId: A276063B-DD97-412D-A727-3B8FD6E6B055_3_en-US

DOI: https://doi.org/10.31003/USPNF_M59750_03_01

DOI Ref: 1vf8m

© 2025 USPC

Do not distribute

Oxymorphone Hydrochloride Injection

DEFINITION

Oxymorphone Hydrochloride Injection is a sterile solution of Oxymorphone Hydrochloride in Water for Injection. It contains NLT 93.0% and NMT 107.0% of the labeled amount of oxymorphone hydrochloride ($C_{17}H_{19}NO_4 \cdot HCl$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- **B.** The UV absorption spectra of the major peak of the *Sample solution* and that of the *Standard solution* exhibit maxima and minima at the same wavelengths, as obtained in the Assay.

ASSAY

• PROCEDURE

Protect all solutions containing oxymorphone from light and use clear glass HPLC vials.

Solution A: Dissolve 2.02 g of sodium 1-heptanesulfonate in 900 mL of water. Add 100 mL of acetonitrile. Adjust with phosphoric acid to a pH of 2.1.

Solution B: Dissolve 2.02 g of sodium 1-heptanesulfonate in 750 mL of water. Add 250 mL of acetonitrile. Adjust with phosphoric acid to a pH of 2.1.

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	100	0
3	100	0
35	0	100
40	0	100
40.1	100	0
50.1	100	0

Diluent: Dissolve 2.02 g of anhydrous sodium 1-heptanesulfonate in 1000 mL of water. Adjust with phosphoric acid to a pH of 2.1.

Standard solution: 0.14 mg/mL of [USP Oxymorphone RS](#) prepared as follows. Transfer a suitable amount of [USP Oxymorphone RS](#) to a suitable volumetric flask. Add 50% of the flask volume of *Diluent*. Sonicate to dissolve, if necessary. Add 9% of the flask volume of acetonitrile. Cool to room temperature and dilute with *Diluent* to volume.

Sample solution: Nominally 0.15 mg/mL of oxymorphone hydrochloride from Injection prepared as follows. Transfer a suitable volume of the composite sample from NLT 20 ampules to a suitable volumetric flask. Dilute with *Solution A* to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector

Assay: UV 230 nm

Identification test B: Diode array UV 200–360 nm

Column: 4.6-mm × 7.5-cm; 3.5-µm packing L1**Column temperature:** 40°**Flow rate:** 1.0 mL/min**Injection volume:** 30 µL**System suitability****Sample:** Standard solution**Suitability requirements****Tailing factor:** NMT 2.0**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** Standard solution and Sample solutionCalculate the percentage of the labeled amount of oxymorphone hydrochloride ($C_{17}H_{19}NO_4 \cdot HCl$) in the portion of Injection taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

 r_U = peak response of oxymorphone from the Sample solution r_S = peak response of oxymorphone from the Standard solution C_S = concentration of [USP Oxymorphone RS](#) in the Standard solution (mg/mL) C_U = nominal concentration of oxymorphone hydrochloride in the Sample solution (mg/mL) M_{r1} = molecular weight of oxymorphone hydrochloride, 337.80 M_{r2} = molecular weight of oxymorphone, 301.34**Acceptance criteria:** 93.0%–107.0%**IMPURITIES****• ORGANIC IMPURITIES**

Protect all solutions containing oxymorphone from light and use clear glass HPLC vials.

Solution A, Solution B, Mobile phase, Diluent, Sample solution, and Chromatographic system: Proceed as directed in the Assay.**System suitability stock solution A:** 0.2 mg/mL of [USP Oxymorphone Related Compound A RS](#) prepared as follows. Transfer a suitable amount of [USP Oxymorphone Related Compound A RS](#) to a suitable volumetric flask. Dissolve with 24% of the flask volume of 0.1 N hydrochloric acid and dilute with acetonitrile to volume.**System suitability stock solution B:** 0.02 mg/mL of [USP Oxymorphone Related Compound A RS](#) in acetonitrile from System suitability stock solution A**System suitability stock solution C:** 0.14 mg/mL of [USP Oxymorphone RS](#) prepared as follows. Transfer a suitable amount of [USP Oxymorphone RS](#) to a suitable volumetric flask. Add 50% of the flask volume of Diluent. Sonicate to dissolve if necessary. Add 9% of the flask volume of acetonitrile. Cool to room temperature and dilute with Diluent to volume.**System suitability solution:** 0.0008 mg/mL of [USP Oxymorphone Related Compound A RS](#) in System suitability stock solution C from System suitability stock solution B**Standard solution:** 0.00014 mg/mL of [USP Oxymorphone RS](#) prepared as follows. Dilute System suitability stock solution C with Solution A.**System suitability****Samples:** System suitability solution and Standard solution**Suitability requirements****Resolution:** NLT 2 between oxymorphone related compound A and oxymorphone, System suitability solution**Relative standard deviation:** NMT 10%, Standard solution**Analysis****Sample:** Sample solution

Calculate the percentage of each individual degradation product in the portion of Injection taken:

$$\text{Result} = \{(r_U/F)/[r_S + \sum(r_U/F)]\} \times 100$$

 r_U = peak response of each individual degradation product from the Sample solution F = relative response factor of each individual degradation product (see [Table 2](#))

r_s = peak response of oxymorphone from the Sample solution**Acceptance criteria:** See [Table 2](#). Disregard any peaks less than 0.05%.**Table 2**

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
10-Hydroxyoxymorphone ^a	0.59	1.0	0.20
Oxymorphone related compound A (oxymorphone N-oxide)	0.82	1.1	0.30
Oxymorphone	1.00	1.0	—
10-Ketooxymorphone ^b	1.37	0.83	0.30
Oxycodone ^c	1.97	1.0	—
1-Bromooxymorphone ^{cd}	2.05	1.0	—
2,2'-Bisoxymorphone ^e	2.08	1.7	1.00
Any individual unspecified degradation product	—	1.0	0.50
Total degradation products	—	—	2.00

^a 4,5 α -Epoxy-3,10,14-trihydroxy-17-methylmorphinan-6-one.^b 4,5 α -Epoxy-3,14-dihydroxy-17-methylmorphinan-6,10-dione.^c Process impurities, not included in the total degradation products.^d 1-Bromo-4,5 α -epoxy-3,14-dihydroxy-17-methylmorphinan-6-one.^e 2,2'-Bioxymorphone.**SPECIFIC TESTS**

- **BACTERIAL ENDOTOXINS TEST (85):** NMT 238.1 USP Endotoxin Units/mg of oxymorphone hydrochloride
- **pH (791):** 2.7–4.5
- **OTHER REQUIREMENTS:** It meets the requirements in [Injections and Implanted Drug Products \(1\)](#).

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in single-dose or in multiple-dose containers of Type I glass. Store at 25°, excursions permitted between 15° and 30°, and protected from light.

- **USP REFERENCE STANDARDS (11).**

[USP Oxymorphone RS](#)[USP Oxymorphone Related Compound A RS](#)4,5 α -Epoxy-3,14-dihydroxy-17-methylmorphinan-6-one N-oxide. $C_{17}H_{19}NO_5$ 317.34

Topic/Question	Contact	Expert Committee
OXYMORPHONE HYDROCHLORIDE INJECTION	Documentary Standards Support	SM22020 Small Molecules 2
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 41(4)

Current DocID: GUID-A276063B-DD97-412D-A727-3B8FD6E6B055_3_en-US

Previous DocID: GUID-A276063B-DD97-412D-A727-3B8FD6E6B055_1_en-US

DOI: https://doi.org/10.31003/USPNF_M59750_03_01

DOI ref: [1vf8m](#)

OFFICIAL