

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Dec-2021
Document Type: USP Monographs
DocId: GUID-3067685F-1F92-4358-B483-7AFD0BA1C5AA_2_en-US
DOI: https://doi.org/10.31003/USPNF_M59521_02_01
DOI Ref: dep2w

© 2025 USPC
Do not distribute

Oxycodone Hydrochloride Extended-Release Tablets

DEFINITION

Oxycodone Hydrochloride Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of oxycodone hydrochloride ($C_{18}H_{21}NO_4 \cdot HCl$).

IDENTIFICATION

- A. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

Add the following:

- ▲ B. The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay. ▲ (USP 1-Dec-2021)

ASSAY

Change to read:

- PROCEDURE

▲ **Buffer solution:** 7.8 g/L of [potassium phosphate, monobasic](#) in [water](#), adjusted with [phosphoric acid](#) to a pH of 3.0

Mobile phase: [Acetonitrile](#) and *Buffer solution* (10:90)

Diluent: [Acetonitrile](#) and [simulated gastric fluid TS](#) without enzyme (10:20)

0.85% phosphoric acid: 10 mL/L of [phosphoric acid](#) in [water](#)

Standard stock solution: 0.9 mg/mL of [USP Oxycodone RS](#) in 0.85% phosphoric acid

Standard solution: 0.09 mg/mL of [USP Oxycodone RS](#) in *Diluent* from the *Standard stock solution*

Sample stock solution: Nominally ($L/100$) mg/mL of oxycodone hydrochloride where L is the label claim in mg/Tablets. Transfer 10 Tablets into a 1000-mL volumetric flask, and add 900 mL of *Diluent*. Stir until the Tablets are completely dispersed. Dilute with *Diluent* to volume.

Physically manipulate the Tablets as necessary to ensure complete dispersion within 24 h with stirring in *Diluent*. Protect this solution from light.

Sample solution: Nominally about 0.1 mg/mL of oxycodone hydrochloride in *Diluent* from the *Sample stock solution*. Pass through a suitable filter of 0.45-μm pore size. For Tablets labeled to contain 10 mg, use the *Sample stock solution* directly.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 280 nm. For *Identification B*, use a diode array detector in the range of 200–350 nm.

Column: 3.0-mm × 25-cm; 5-μm packing [L1](#)

Column temperature: 60°

Flow rate: 1.0 mL/min

Injection volume: 10 μL

Run time: NLT 1.4 times the retention time of oxycodone

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: 0.7–1.2

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of oxycodone hydrochloride ($C_{18}H_{21}NO_4 \cdot HCl$) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak response of oxycodone from the *Sample solution* r_S = peak response of oxycodone from the *Standard solution* C_S = concentration of [USP Oxycodone RS](#) in the *Standard solution* (mg/mL) C_U = nominal concentration of oxycodone hydrochloride in the *Sample solution* (mg/mL) M_{r1} = molecular weight of oxycodone hydrochloride, 351.82 M_{r2} = molecular weight of oxycodone base, 315.36▲ (USP 1-Dec-2021)**Acceptance criteria:** 90.0%–110.0%

PERFORMANCE TESTS

Change to read:

- [Dissolution \(711\)](#).

▲ Medium: [Simulated gastric fluid TS](#) without enzymes; 900 mL**Apparatus 1:** 100 rpm. Include a stainless-steel spring across the underside of the top of each of the baskets to prevent Tablet adhesion to the underside of the top of the baskets during the test.**Times:** 1, 4, and 12 h**0.85% phosphoric acid:** 10 mL/L of [phosphoric acid](#) in [water](#)**Mobile phase:** Transfer 28.0 g of [potassium phosphate, monobasic](#) into a 4-L flask, and dissolve with 3600 mL of [water](#). Adjust with [phosphoric acid](#) to a pH of 3.0. Add 400 mL of [acetonitrile](#), and mix.**Standard stock solution:** 0.9 mg/mL of [USP Oxycodone RS](#) in [0.85% phosphoric acid](#)**Standard solution:** Dilute the *Standard stock solution* with *Medium* to obtain a solution having a concentration of 0.009 mg/mL of [USP Oxycodone RS](#) for Tablets labeled to contain 10, 15, 20, 30, and 40 mg, and 0.063 mg/mL of [USP Oxycodone RS](#) for Tablets labeled to contain 60 and 80 mg.**Sample solution:** Pass the solution under test through a suitable filter of 1.0- or 10- μ m pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 230 nm**Column:** 3.0-mm \times 25-cm; 5- μ m packing [L1](#)**Column temperature:** 60°**Flow rate:** 1.0 mL/min**Injection volume:** 10 μ L**Run time:** NLT 3.7 times the retention time of oxycodone

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: 0.7–1.2**Relative standard deviation:** NMT 2%

Analysis

Samples: *Standard solution* and *Sample solution*Calculate the concentration (C_i) of oxycodone hydrochloride ($C_{18}H_{21}NO_4 \cdot HCl$) in the sample withdrawn from the vessel at each time point

(i):

$$\text{Result}_i = (r_U/r_S) \times C_S \times (M_{r1}/M_{r2})$$

 r_U = peak response of oxycodone from the *Sample solution* r_S = peak response of oxycodone from the *Standard solution* C_S = concentration of [USP Oxycodone RS](#) in the *Standard solution* (mg/mL) M_{r1} = molecular weight of oxycodone hydrochloride, 351.82 M_{r2} = molecular weight of oxycodone base, 315.36

Calculate the percentage of the labeled amount of oxycodone hydrochloride ($C_{18}H_{21}NO_4 \cdot HCl$) released at each time point (i):

$$Result_1 = C_1 \times V \times (1/L) \times 100$$

$$Result_2 = \{[C_2 \times (V - V_s)] + (C_1 \times V_s)\} \times (1/L) \times 100$$

$$Result_3 = \{(C_3 \times [V - (2 \times V_s)]) + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

C_i = concentration of oxycodone hydrochloride in the portion of the sample withdrawn at time point i (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_s = volume of the *Sample solution* withdrawn from the *Medium* (mL)

Tolerances: See [Table 1](#) for Tablets labeled to contain 10, 15, 20, and 60 mg; see [Table 2](#) for Tablets labeled to contain 30 and 40 mg; see [Table 3](#) for Tablets labeled to contain 80 mg.

Table 1

Time Point (i)	Time (h)	Amount Released (%)
1	1	15–35
2	4	55–75
3	12	NLT 85

Table 2

Time Point (i)	Time (h)	Amount Released (%)
1	1	15–35
2	4	60–80
3	12	NLT 85

Table 3

Time Point (i)	Time (h)	Amount Released (%)
1	1	15–35
2	4	52–72
3	12	NLT 85

The percentages of the labeled amount of oxycodone hydrochloride ($C_{18}H_{21}NO_4 \cdot HCl$) dissolved at the times specified conform to

[Dissolution \(711\)](#), [Acceptance Table 2](#). ▲ (USP 1-Dec-2021)

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meet the requirements

IMPURITIES

Delete the following:

- ▲ [LIMIT OF OXYCODONE RELATED COMPOUND B \(OXYCODONE N-OXIDE\)](#)

Diluent: 10 mL/L of phosphoric acid in water

Buffer: 6.8 g/L of monobasic potassium phosphate. Add 1.2 mL of triethylamine, and adjust with *Diluent* to a pH of 3.0 ± 0.1 .

Mobile phase: Methanol, *tert*-butyl methyl ether, and *Buffer* (30:1:170)

Standard solution: 0.18 mg/mL of [USP Oxycodone RS](#) and 0.002 mg/mL of [USP Oxycodone Related Compound B RS](#) in *Diluent*. [NOTE—Prepare fresh daily.]

Sample stock solution: Transfer 10 Tablets into a 500-mL volumetric flask, add 50 mL of *Diluent* and 50 mL of alcohol, and sonicate for 90 min to extract the active ingredient. Dilute with *Diluent* to volume.

Sample solution: 0.2 mg/mL of oxycodone hydrochloride from the *Sample stock solution* in *Diluent*. Pass a portion of the solution through a suitable filter, and use the filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 3.9-mm \times 30-cm; 10- μ m packing [L1](#)

Column temperature: 60°

Flow rate: 1.0 mL/min

Injection volume: 50 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Resolution: NLT 4.5 between the oxycodone and oxycodone related compound B peaks

Relative standard deviation: NMT 3.0% for oxycodone related compound B

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of oxycodone related compound B in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak area of oxycodone related compound B from the *Sample solution*

r_S = peak area of oxycodone related compound B from the *Standard solution*

C_S = concentration of [USP Oxycodone Related Compound B RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of oxycodone hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: NMT 1%▲ (USP 1-Dec-2021)

Add the following:

▲. ORGANIC IMPURITIES

Buffer solution, Mobile phase, Diluent, 0.85% phosphoric acid, Standard stock solution, Sample stock solution, and Sample solution: Prepare as directed in the Assay.

Standard solution: 0.9 μ g/mL of [USP Oxycodone RS](#) in *Diluent* from the *Standard stock solution*

Sensitivity solution: 0.0001 mg/mL of [USP Oxycodone RS](#) in *Diluent* from the *Standard solution*

System suitability stock solution: 0.1 mg/mL of [USP Oxycodone Related Compound B RS](#) in 0.85% Phosphoric acid

System suitability solution: 0.9 μ g/mL of [USP Oxycodone RS](#) and 0.001 mg/mL of [USP Oxycodone Related Compound B RS](#) prepared by diluting the *System suitability stock solution* with the *Standard solution*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 206 nm

Column: 4.6-mm \times 25-cm; 3- μ m packing [L1](#)

Column temperature: 60°

Flow rate: 1.0 mL/min

Injection volume: 10 μ L

Run time: NLT 4.5 times the retention time of oxycodone

System suitability

Samples: *Standard solution, Sensitivity solution, and System suitability solution*

Suitability requirements**Relative standard deviation:** NMT 5.0%, *Standard solution***Resolution:** NLT 8.0 between oxycodone and oxycodone related compound B, *System suitability solution***Signal-to-noise ratio:** NLT 10, *Sensitivity solution***Analysis****Samples:** *Sample solution and Standard solution*

Calculate the percentage of each degradation product in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

 r_U = peak response of each degradation product from the *Sample solution* r_S = peak response of oxycodone from the *Standard solution* C_S = concentration of [USP Oxycodone RS](#) in the *Standard solution* (mg/mL) C_U = nominal concentration of oxycodone hydrochloride in the *Sample solution* (mg/mL) F = relative response factor of each degradation product (see [Table 4](#))**Acceptance criteria:** See [Table 4](#). The reporting threshold is 0.1%.**Table 4**

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Oxycodone	1.0	1.00	—
Oxycodone related compound B	1.6	0.94	0.5
Any unspecified degradation product	—	1.00	0.2
Total degradation products	—	—	1.0▲ (USP 1-Dec-2021)

ADDITIONAL REQUIREMENTS• **PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers, and store at controlled room temperature.**Delete the following:**▲ • **LABELING:** When more than one *Dissolution Test* is given, the labeling states the *Dissolution Test* used only if *Test 1* is not used.▲ (USP 1-Dec-2021)• [USP REFERENCE STANDARDS \(11\)](#).[USP Oxycodone RS](#)[USP Oxycodone Related Compound B RS](#)4,5α-Epoxy-14-hydroxy-3-methoxy-17-methylmorphinan-6-one *N*-oxide. $C_{18}H_{21}NO_5$ 331.36**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
OXYCODONE HYDROCHLORIDE EXTENDED-RELEASE TABLETS	Documentary Standards Support	SM22020 Small Molecules 2
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 46(4)

Current DocID: GUID-3067685F-1F92-4358-B483-7AFD0BA1C5AA_2_en-US

DOI: https://doi.org/10.31003/USPNF_M59521_02_01

DOI ref: [dep2w](#)

OFFICIAL