

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-DD0E3172-3C2F-43E5-8370-61671C2F9796_11_en-US
DOI: https://doi.org/10.31003/USPNF_M59502_11_01
DOI Ref: 76y7w

© 2025 USPC
Do not distribute

Oxybutynin Chloride Extended-Release Tablets

DEFINITION

Oxybutynin Chloride Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$).

IDENTIFICATION

Change to read:

- A. **SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197F** ▲ (CN 1-May-2020)

Standard: Dissolve 15 mg of [USP Oxybutynin Chloride RS](#) in 5 mL of [water](#). Adjust with [0.1 N sodium hydroxide](#) to a pH of between 7 and 8. Extract the solution twice with 10 mL of [ether](#). Combine the extracts, evaporate the ether, and dry under vacuum over [silica gel](#) for at least 30 min. Redissolve the dried residue in a small amount of [acetone](#), transfer the solution to an IR salt plate, and evaporate to cast a thin film.

Sample: Add a quantity of finely powdered Tablets, equivalent to about 15 mg of oxybutynin chloride, to 5 mL of [water](#) per Tablet. Mix for 1 min. Adjust with [0.1 N sodium hydroxide](#) to a pH between 7 and 8. Extract the solution twice with 10 mL of ether. Combine the extracts, evaporate the [ether](#), and dry under vacuum over [silica gel](#) for at least 30 min. Redissolve the dried residue in a small amount of [acetone](#), transfer the solution to an IR salt plate, and evaporate to cast a thin film.

- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE 1

Diluent: Use [water](#) adjusted with [phosphoric acid](#) to a pH of 3.5.

Solution A: [Methanol](#) and [acetonitrile](#) (1:1)

Mobile phase: [Acetonitrile](#), [triethylamine](#), and [water](#) (700:3:1300). Adjust with [phosphoric acid](#) to a pH of 3.9.

Impurity stock solution: 0.11 mg/mL of [USP Oxybutynin Related Compound A RS](#) in [acetonitrile](#)

Standard stock solution: 0.37 mg/mL of [USP Oxybutynin Chloride RS](#) in [acetonitrile](#)

System suitability solution: Transfer 10 mL of the *Standard stock solution* and 1 mL of the *Impurity stock solution* to a 100-mL volumetric flask, and dilute with *Diluent* to volume.

Standard solution: 0.1 mg/mL of [USP Oxybutynin Chloride RS](#) in *Diluent* from the *Standard stock solution*

Sample solution

For Tablets that contain 5 mg of oxybutynin chloride: Place 10 Tablets in a 500-mL volumetric flask, add 150 mL of *Solution A*, and stir for at least 4 h or until dissolved. Dilute with *Diluent* to volume. Mix thoroughly, centrifuge, and use the clear supernatant.

For Tablets that contain 10 mg or more of oxybutynin chloride: Place 10 Tablets in a 1000-mL volumetric flask, add 300 mL of *Solution A*, and stir for at least 4 h or until dissolved. Dilute with *Diluent* to volume. If necessary, make a further dilution with *Diluent* to obtain a solution having a final concentration equivalent to 0.1 mg/mL of oxybutynin chloride. Mix thoroughly, centrifuge, and use the clear supernatant.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 15-cm; packing L11

Flow rate: 1.5 mL/min

Injection volume: 50 μ L

System suitability

Sample: *System suitability solution*

[NOTE—The relative retention times for oxybutynin and oxybutynin related compound A are about 1.0 and 1.6, respectively.]

Suitability requirements

Resolution: NLT 1.5 between oxybutynin and oxybutynin related compound A

Tailing factor: Greater than 0.75 and NMT 2.5 for each peak

Relative standard deviation: NMT 3% for each compound for six replicate injections

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response from the Sample solution

r_S = peak response from the Standard solution

C_S = concentration of [USP Oxybutynin Chloride RS](#) in the Standard solution (mg/mL)

C_U = nominal concentration of oxybutynin chloride in the Sample solution (mg/mL)

Acceptance criteria: 90.0%–110.0%

- **PROCEDURE 2:** Use Procedure 2 for Tablets labeled to meet the requirements of USP Dissolution Test 9.

Mobile phase, Chromatographic system, System suitability and Analysis: Proceed as directed in Assay Procedure 1.

Diluent: [Methanol](#) and [water](#) (80:20)

Impurity stock solution: 0.11 mg/mL of [USP Oxybutynin Related Compound A RS](#) in [methanol](#). Sonicate to dissolve, if necessary.

Standard stock solution: 0.37 mg/mL of [USP Oxybutynin Chloride RS](#) in [Diluent](#). Sonicate to dissolve, if necessary.

System suitability solution: Transfer 10 mL of the Standard stock solution and 1 mL of the Impurity stock solution to a 100-mL volumetric flask, and dilute with [Diluent](#) to volume.

Standard solution: 0.1 mg/mL of [USP Oxybutynin Chloride RS](#) in [Diluent](#) from the Standard stock solution

Sample solution: Nominally 0.1 mg/mL of oxybutynin chloride prepared as follows. Place 10 Tablets in an appropriate volumetric flask, add 60% of the flask volume of [Diluent](#), and sonicate for at least 60 min with intermittent shaking. Maintain the temperature of the sonicator between 20 and 25°. Dilute with [Diluent](#) to volume. Mix thoroughly, centrifuge, and use the clear supernatant. Further dilute with [Diluent](#) as needed. [NOTE—Centrifuging at 6000 rpm for 10 min may be suitable.]

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

Change to read:

- [Dissolution \(711\)](#).

Test 1

Medium: [Simulated gastric fluid](#) without enzyme; 50 mL

Apparatus 7: See [Drug Release \(724\)](#), 30 cycles/min; 2–3-cm amplitude, at $37.0 \pm 0.5^\circ$

Times: 4, 10, and 24 h

Solution A: 4.83 g/L of [monobasic sodium phosphate](#) in [water](#). Add 2.3 mL/L of [triethylamine](#), and adjust with [phosphoric acid](#) to a pH of 2.2 ± 0.2 .

Mobile phase: [Acetonitrile](#) and Solution A (7:13)

Solution B: To 1 L of [water](#) add [phosphoric acid](#) dropwise to a pH of 3.5, and mix well.

Standard stock solutions: 250, 300, and 350 μ g/mL of [USP Oxybutynin Chloride RS](#) in [acetonitrile](#)

Standard solutions: Prepare a series of dilutions of the Standard stock solutions in Solution B having final concentrations similar to those expected in the Sample solution.

System suitability solution: Use a medium range Standard solution of [USP Oxybutynin Chloride RS](#).

Sample solution: Use portions of the solution under test. If the solution is cloudy, centrifuge at 2000 rpm for 10 min, and use the supernatant.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm \times 5-cm; packing L11

Column temperature: 35°

Flow rate: 1.5 mL/min

Injection volume: 50 μ L

System suitability**Sample:** System suitability solution**Suitability requirements****Tailing factor:** Greater than 0.5 and less than 2.5**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** Standard solutions and Sample solution

Construct a calibration curve by plotting the peak response versus concentration of the Standard solutions. A weighing factor, $1/x$, is applied to the regression line of the calibration curve to enhance the accuracy of the low standard concentrations.

Determine the percentage of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved in each interval from a linear regression analysis of the calibration curve.

Tolerances: See [Tables 1](#) and [2](#).**Table 1. For Tablets Labeled to Contain 5 or 10 mg of Oxybutynin Chloride**

Time (h)	Amount Dissolved
4	NMT 20%
10	34.5%–59.5%
24	NLT 80%

Table 2. For Tablets Labeled to Contain 15 mg of Oxybutynin Chloride

Time (h)	Amount Dissolved
4	NMT 20%
10	34.5%–59.5%
24	NLT 75%

The percentages of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved at the times specified conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Test 2: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 2*.**Acid stage medium:** [Simulated gastric fluid](#), without enzymes, pH 1.2 ± 0.05 ; 250 mL (first row)**Buffer stage medium:** [Simulated [▲]intestinal fluid \(ERR-1-May-2020\)](#), without enzymes, pH 6.8 ± 0.1 ; 250 mL (rows 2–4)**Apparatus 3:** 25 dips/min; 20-mesh polypropylene screen on top and bottom; 30 s drip time**Times:** 2 h in the *Acid stage medium* (first row); 4, 8, and 16 h (corresponding to 2, 6, and 14 h after changing the medium) in the *Buffer stage medium* (rows 2–4)**Solution A:** Transfer 1 mL of [triethylamine](#) to 1000 mL of [water](#). Adjust with [phosphoric acid](#) to a pH of 3.50 ± 0.05 .**Mobile phase:** [Acetonitrile](#) and *Solution A* (4:1)**Standard stock solution:** 0.2 mg/mL of [USP Oxybutynin Chloride RS](#) in *Acid stage medium***Working standard solution:** Transfer 5.0 mL of the *Standard stock solution* for Tablets labeled to contain 5 mg, transfer 10 mL for Tablets labeled to contain 10 mg, or transfer 15 mL for Tablets labeled to contain 15 mg to a 100-mL volumetric flask. Dilute with *Buffer stage medium* to volume.**Sample solution:** Centrifuge a portion of the solution under test at approximately 3000 rpm for 10 min. Use the supernatant.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 203 nm**Column:** 4.6-mm \times 25-cm; packing L7**Flow rate:** 1.5 mL/min

Injection volume: 25 μ L**System suitability****Sample:** Working standard solution**Suitability requirements****Tailing factor:** NMT 2.0**Relative standard deviation:** NMT 3.0%**Analysis****Samples:** Working standard solution and Sample solutionCalculate the percentage of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved at each time point (C_{T2} , C_{T4} , C_{T8} , C_{T16}):

$$C_i = (r_u/r_s) \times (C_s/L) \times V \times 100$$

 r_u = peak response from the Sample solution r_s = peak response from the Working standard solution C_s = concentration of the Working standard solution (mg/mL) L = label claim (mg/Tablet) V = volume of Medium, 250 mL C_{T2} = percentage dissolved at 2 h, C_2 C_{T4} = percentage dissolved at 4 h, $C_2 + C_4$ C_{T8} = percentage dissolved at 8 h, $C_2 + C_4 + C_8$ C_{T16} = percentage dissolved at 16 h, $C_2 + C_4 + C_8 + C_{16}$ **Tolerances:** See [Tables 3](#) and [4](#).**Table 3. For Tablets Labeled to Contain 5 or 10 mg of Oxybutynin Chloride**

Time (h)	Amount Dissolved
2	0%–10%
4	10%–30%
8	40%–65%
16	NLT 80%

Table 4. For Tablets Labeled to Contain 15 mg of Oxybutynin Chloride

Time (h)	Amount Dissolved
2	0%–10%
4	10%–30%
8	35%–65%
16	NLT 75%

The percentages of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved at the times specified conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Test 3: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 3*.

Medium: [Simulated gastric fluid](#) without enzyme; 50 mL

Apparatus 7: See [Drug Release \(724\)](#). Use acrylic rods. 30 dips/min, $37.0 \pm 0.5^\circ$, 10 s drip time. Dip time interval: row 1, 1 h; row 2, 3 h; row 3, 6 h; row 4, 5 h; row 5, 9 h.

Times: 4, 10, and 24 h

pH 2.3 phosphate buffer: 3.4 g/L of [monobasic potassium phosphate](#) in [water](#). Adjust with [phosphoric acid](#) or 2 N potassium hydroxide to a pH of 2.30 ± 0.05 .

Standard solution: ($L/200$) mg/mL of [USP Oxybutynin Chloride RS](#) in [Medium](#), where L is the label claim in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable nylon filter of 0.45- μm pore size, discarding the first few mL.

Mobile phase: pH 2.3 phosphate buffer and [acetonitrile](#) (7:3)

Chromatographic system

(See [Chromatography \(621\)](#), [System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm \times 15-cm; packing L10

Flow rate: 1.0 mL/min

Injection volume: 10 μL

System suitability

Sample: [Standard solution](#)

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: [Standard solution](#) and [Sample solution](#)

Calculate the amount, in mg, of oxybutynin chloride ($\text{C}_{22}\text{H}_{31}\text{NO}_3 \cdot \text{HCl}$) dissolved at each time interval:

$$\text{Result} = (r_u/r_s) \times (C_s/L) \times V$$

r_u = peak response from the [Sample solution](#)

r_s = peak response from the [Standard solution](#)

C_s = concentration of the [Standard solution](#) (mg/mL)

L = label claim (mg/Tablet)

V = volume of [Medium](#), 50 mL

Calculate the percentage of the labeled amount of oxybutynin dissolved:

$$\text{Result} = \Sigma(\text{amount dissolved at current time interval} + \text{amount dissolved at previous time intervals}) \times 100/L$$

Tolerances: See [Table 5](#).

Table 5

Time (h)	Amount Dissolved
4	NMT 25%
10	40%–65%
24	NLT 75%

The percentages of the labeled amount of oxybutynin chloride ($\text{C}_{22}\text{H}_{31}\text{NO}_3 \cdot \text{HCl}$) dissolved at the times specified conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Test 4: If the product complies with this test, the labeling indicates that the product meets USP [Dissolution Test 4](#).

Acid stage medium: [0.1 N hydrochloric acid](#); 900 mL

Buffer stage medium: pH 6.0 sodium phosphate buffer with 0.2% of [sodium lauryl sulfate](#); 900 mL

Apparatus 2: 50 rpm, with sinkers. [NOTE—A suitable sinker is available as catalog number CAPWHT-2S from [www.QLA-LLC.com](#).]

Times: 2 h in the *Acid stage medium*; 4, 6, and 14 h (corresponding to 2, 4, 12 h after changing the medium) in the *Buffer stage medium***Standard solution:** ($L/1000$) mg/mL of [USP Oxybutynin Chloride RS](#) in *Buffer stage medium*, where L is the label claim, in mg/Tablet**Sample solution:** Pass a portion of the solution under test through a suitable PVDF filter of 0.45- μ m pore size.**pH 3.5 phosphate buffer:** 6.94 g/L of [monobasic potassium phosphate](#) in [water](#). Adjust with diluted [phosphoric acid](#) to a pH of 3.50 ± 0.05 .**Mobile phase:** pH 3.5 phosphate buffer and [acetonitrile](#) (1:1)**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 210 nm**Column:** 4.6-mm \times 15-cm; packing L7**Flow rate:** 1.0 mL/min**Injection volume:** 20 μ L**System suitability****Sample:** *Standard solution***Suitability requirements****Column efficiency:** NLT 2000 theoretical plates**Tailing factor:** NMT 2.0**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the concentration (C_i) in mg/mL of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) at each time point (i):

$$C_i = (r_u/r_s) \times C_s$$

 r_u = peak response from the *Sample solution* r_s = peak response from the *Standard solution* C_s = concentration of the *Standard solution* (mg/mL)Calculate the cumulative percentage of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved (Q_i) at each time point (i):At $i = 1$

$$Q_1 = (C_1 \times V/L) \times 100$$

At $i = 2$ to n

$$\frac{(C_1 \times 900) + \sum_{j=2}^{n-1} C_j V_s + C_n \times [900 - (n-2)V_s] \times 100}{L}$$

 i = 1, 2, ..., n j = 2, 3, ..., $n-1$ C_i = concentration of oxybutynin chloride in the *Sample solution* at time point i (mg/mL) C_j = concentration of oxybutynin chloride in the *Sample solution* at time point 2 through $n-1$ (mg/mL) V_s = sampling volume (mL) L = label claim (mg/Tablet)**Tolerances:** See [Table 6](#).**Table 6**

Time (h)	Amount Dissolved
2	NMT 10%
4	10%–40%

Time (h)	Amount Dissolved
6	40%–75%
14	NLT 85%

The percentages of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved at the times specified conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Test 5: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 5*.

Medium: Acetate buffer pH 4.5, prepared as follows. Transfer 2.99 g of [sodium acetate](#) to a 1000-mL volumetric flask, dissolve in 700 mL of [water](#), adjust with [glacial acetic acid](#) to a pH of 4.5, and dilute with [water](#) to volume; 900 mL.

Apparatus 2: 75 rpm

Times: 2, 8, 12, and 24 h

Standard stock solution: 0.28 mg/mL of [USP Oxybutynin Chloride RS](#) in [acetonitrile](#). Use sonication, if necessary.

Standard solution: ($L/900$) mg/mL of [USP Oxybutynin Chloride RS](#) in [Medium](#), where L is the label claim, in mg/Tablet, from the *Standard stock solution*

Sample solution: Pass a portion of the solution under test through a suitable PVDF filter of 0.45- μ m pore size, discarding the first few mL of the filtrate. Replace the portion of solution withdrawn with an equal volume of [Medium](#).

pH 3.5 phosphate buffer: 6.94 g/L of [monobasic potassium phosphate](#) in [water](#). Adjust with [phosphoric acid](#) to a pH of 3.50 ± 0.05 .

Mobile phase: pH 3.5 phosphate buffer and [acetonitrile](#) (1:1)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing L7

Flow rate: 1.0 mL/min

Injection volume: 20 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Column efficiency: NLT 2000 theoretical plates

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0% for six replicate injections

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration (C_1), in mg/mL, of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) in the sample withdrawn from the vessel at each point (i):

$$\text{Result}_i = (r_U/r_S) \times C_S$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_S = concentration of the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{(C_4 \times V) + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of oxybutynin chloride in the portion of the sample withdrawn at the specified time point (mg/mL) V = volume of *Medium*, 900 mL L = label claim (mg/Tablet) V_s = volume of the *Sample solution* withdrawn at each time point and replaced with *Medium* (mL)**Tolerances:** See [Table 7](#).**Table 7**

Time (h)	Amount Dissolved
2	NMT 10%
8	30%–50%
12	55%–75%
24	NLT 85%

The percentages of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved at the times specified conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Test 6: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 6*.

Medium: [Simulated gastric fluid](#) without enzyme; 50 mL

Apparatus 7: See [Drug Release \(724\)](#); each Tablet is glued to a suitable rod with water insoluble glue. At the end of each specified test interval, the systems are transferred to the next row of new tubes containing 50 mL of fresh *Medium*, 30 cycles/min; 2–3 cm amplitude.

Times: 4, 10, and 24 h

Calculate the percentage of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved by using the following method.

Buffer: 4.83 g/L of [monobasic sodium phosphate](#) in [water](#). Add 2.3 mL/L of [triethylamine](#), and adjust with [phosphoric acid](#) to a pH of 2.2 ± 0.2 .

Mobile phase: [Acetonitrile](#) and **Buffer** (25:75)

Diluent: To 1 L of [water](#) add [phosphoric acid](#) dropwise to a pH of 3.5 and mix well.

Standard stock solution: 0.5 mg/mL of [USP Oxybutynin Chloride RS](#) in [acetonitrile](#)

Standard solution: 0.05 mg/mL of [USP Oxybutynin Chloride RS](#) in **Diluent** from **Standard stock solution**

Sample solution: Pass a portion of the solution under test through a suitable PVDF filter of 0.45- μ m pore size, discarding the first few milliliters of the filtrate. Dilute with **Diluent**, if necessary, to obtain a solution with a concentration similar to that of the **Standard solution**.

Chromatographic system

(See [Chromatography \(621\)](#), [System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm \times 5-cm; 5- μ m packing [L11](#)

Column temperature: 35°

Flow rate: 1.5 mL/min

Injection volume: 50 μ L

System suitability

Sample: **Standard solution**

Suitability requirements

Tailing factor: 0.5–2.5

Relative standard deviation: NMT 2.0%

Analysis

Samples: **Standard solution** and **Sample solution**

Calculate the concentration (C_i), in mg/mL, of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) in the sample withdrawn from the vessel at each time point (i) shown in [Table 8](#):

$$C_i = (r_u/r_s) \times C_s$$

r_u = peak response of oxybutynin from the *Sample solution* r_s = peak response of oxybutynin from the *Standard solution* C_s = concentration of [USP Oxybutynin Chloride RS](#) in the *Standard solution* (mg/mL)Calculate the percentage of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved at each time point shown in [Table 8](#):

$$\text{Result}_1 = C_1 \times V \times D \times (1/L) \times 100$$

$$\text{Result}_2 = (C_2 + C_1) \times V \times D \times (1/L) \times 100$$

$$\text{Result}_3 = (C_1 + C_2 + C_3) \times V \times D \times (1/L) \times 100$$

 C_i = concentration of oxybutynin chloride in the portion of sample withdrawn at time point i (mg/mL) V = volume of *Medium*, 50 mL D = dilution factor for the *Sample solution* L = label claim (mg/Tablet)**Tolerances:** See [Table 8](#).**Table 8**

Time (h)	Amount Dissolved (%)
4	NMT 20
10	35–60
24	NLT 80

The percentages of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved at the times specified conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).**Test 7:** If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 7*.**Acid stage medium:** [0.1 N hydrochloric acid](#); 900 mL**Buffer stage medium:** pH 6.0 sodium phosphate buffer with 0.2% of [sodium lauryl sulfate](#); 900 mL**Apparatus 2:** 50 rpm, with sinkers. [NOTE—A suitable sinker is available as catalog number CAPWHT-2S from www.QLA-LLC.com.]**Times:** 2 h in the *Acid stage medium*; 4, 8, and 16 h (corresponding to 2, 6, 14 h after changing the medium) in the *Buffer stage medium* for 5 mg Tablets and 6, 10, 16 h (corresponding to 4, 8, 14 h after changing the medium) in the *Buffer stage medium* for 10 mg and 15 mg Tablets.**Procedure:** After 2 h in the *Acid stage medium*, withdraw a sample from the solution, and filter. Replace the *Acid stage medium* with the *Buffer stage medium*, and run the test for the times specified.**Buffer:** 6.94 g/L of [monobasic potassium phosphate](#) in [water](#). Adjust with diluted [phosphoric acid](#) to a pH of 3.50 ± 0.05 .**Mobile phase:** [Acetonitrile](#) and *Buffer* (1:1)**Standard solution:** 0.01 mg/mL of [USP Oxybutynin Chloride RS](#) in *Buffer stage medium***Sample solution:** Pass a portion of the solution under test through a suitable PVDF filter of 0.45- μ m pore size.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 210 nm**Column:** 4.6-mm \times 15-cm; 5- μ m packing L7**Flow rate:** 1.0 mL/min**Injection volume:** 10 μ L**System suitability****Sample:** *Standard solution***Suitability requirements**

Tailing factor: NMT 2.0**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** Standard solution and Sample solutionCalculate the percentage of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved in the Acid stage medium:

$$\text{Result} = (r_U/r_S) \times C_S \times V \times (1/L) \times 100$$

 r_U = peak response from the Sample solution r_S = peak response from the Standard solution C_S = concentration of [USP Oxybutynin Chloride RS](#) in the Standard solution (mg/mL) V = volume of the Acid stage medium, 900 mL L = label claim (mg/Tablet)Calculate the concentration (C_i) of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) in the sample withdrawn from the vessel at each time point i during the buffer stage:

$$C_i = (r_i/r_S) \times C_S$$

 r_i = peak response from the Sample solution at time point i r_S = peak response from the Standard solution C_S = concentration of [USP Oxybutynin Chloride RS](#) in the Standard solution (mg/mL)Calculate the percentage of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved at each time point i during the buffer stage:

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_S)] + (C_1 \times V_S)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{[C_3 \times [V - (2 \times V_S)]] + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

 C_i = concentration of oxybutynin chloride in the Sample solution withdrawn at time point i (mg/mL) V = volume of the Buffer stage medium, 900 mL L = label claim (mg/Tablet) V_S = volume of the Sample solution withdrawn at each time point i during the buffer stage (mL)**Tolerances:** See [Tables 9](#) and [10](#).**Table 9. For Tablets Labeled to Contain 5 mg of Oxybutynin Chloride**

Time (h)	Amount Dissolved (%)
2	NMT 10
4	15-35
8	40-70
16	NLT 70

Table 10. For Tablets Labeled to Contain 10 and 15 mg of Oxybutynin Chloride

Time (h)	Amount Dissolved (%)
2	NMT 10
6	35–60
10	60–85
16	NLT 80

The percentages of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved at the times specified conform to [Dissolution \(711\), Acceptance Table 2](#).

Test 8: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 8*.

Acid stage medium: [Simulated gastric fluid](#), without enzymes, pH 1.2; 250 mL (first row)

Buffer stage medium: [Simulated intestinal fluid](#), without enzymes, pH 6.8; 250 mL (rows 2–4)

Apparatus 3: 25 dips/min; 20-mesh polypropylene screen on top and bottom; 30 s drip time

Times: 2 h in the *Acid stage medium* (first row); 4, 8, and 16 h (corresponding to 2, 6, and 14 h after changing the medium) in the *Buffer stage medium* (rows 2–4)

Buffer: 4.83 g/L of [monobasic sodium phosphate](#) in [water](#). Add 2.3 mL/L of [triethylamine](#), and adjust with diluted [phosphoric acid](#) to a pH of 4.0.

Mobile phase: [Acetonitrile](#) and *Buffer* (35:65)

Standard stock solution: 0.2 mg/mL of [USP Oxybutynin Chloride RS](#) in *Acid stage medium*

Standard solution: Transfer volume of the *Standard stock solution* specified in [Table 11](#) to a 100-mL volumetric flask and dilute with *Buffer stage medium* to volume.

Table 11

Tablet Strength (mg)	Volume of Standard stock solution (mL)	Final Volume (mL)
5	5.0	100.0
10	10.0	100.0
15	15.0	100.0

Sample solution: Pass a portion of the solution under test through a suitable PVDF filter of 0.45- μ m pore size, discarding the first few milliliters.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm \times 5-cm; 5- μ m packing L7

Column temperature: 35°

Flow rate: 1.5 mL/min

Injection volume: 50 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the total percentage of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved at each time point (C_{T2} , C_{T4} , C_{T8} , C_{T16}):

$$C_i = (r_U/r_S) \times (C_S/L) \times V \times 100$$

 C_i = percentage of oxybutynin chloride in the *Sample solution* withdrawn at time point i r_U = peak response from the *Sample solution* r_S = peak response from the *Standard solution* C_S = concentration of [USP Oxybutynin Chloride RS](#) in the *Standard solution* (mg/mL) L = label claim (mg/Tablet) V = volume of *Medium*, 250 mL C_{T2} = percentage dissolved at 2 h, C_{T2} C_{T4} = percentage dissolved at 4 h, $C_{T2} + C_{T4}$ C_{T8} = percentage dissolved at 8 h, $C_{T2} + C_{T4} + C_{T8}$ C_{T16} = percentage dissolved at 16 h, $C_{T2} + C_{T4} + C_{T8} + C_{T16}$ **Tolerances:** See [Table 12](#).**Table 12**

Time (h)	Amount Dissolved (%)
2	NMT 10
4	5-25
8	34-59
16	NLT 80

The percentages of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved at the times specified conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).**Test 9:** If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 9*.**Acid stage medium, Buffer stage medium, Apparatus 3, Times, Solution A, Mobile phase, Standard stock solution, Working standard solution, Sample solution, Chromatographic system, System suitability, and Analysis:** Proceed as directed in *Test 2*.**Tolerances:** See [Table 13](#).**Table 13**

Time (h)	Amount Dissolved (%)
2	0-10
4	10-30
8	46-66
16	NLT 80

The percentages of the labeled amount of oxybutynin chloride ($C_{22}H_{31}NO_3 \cdot HCl$) dissolved at the times specified conform to [Dissolution \(711\), Acceptance Table 2](#).

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meet the requirements

IMPURITIES

- [ORGANIC IMPURITIES](#)

Diluent, Solution A (if Assay, Procedure 1 is used), Mobile phase, Impurity stock solution, System suitability solution, Sample solution, Chromatographic system, and System suitability: Proceed as directed in the corresponding Assay procedure.

Impurity standard solution: 1 µg/mL of [USP Oxybutynin Related Compound A RS](#) in the corresponding *Diluent* from the corresponding *Impurity stock solution*

Analysis

Samples: *Impurity standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of each impurity from the *Sample solution*

r_S = peak response from the *Impurity standard solution*

C_S = concentration of [USP Oxybutynin Related Compound A RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of the *Sample solution* (mg/mL)

[NOTE—Disregard any peak less than 0.1%.]

Acceptance criteria

Individual impurities: NMT 1% of oxybutynin related compound A is found.

Total impurities: NMT 2%

ADDITIONAL REQUIREMENTS

- [PACKAGING AND STORAGE](#): Preserve in tight containers. Store at controlled room temperature.
- [LABELING](#): When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- [USP REFERENCE STANDARDS \(11\)](#).

[USP Oxybutynin Chloride RS](#)

[USP Oxybutynin Related Compound A RS](#)

Phenylcyclohexylglycolic acid.
 $C_{14}H_{18}O_3$ 234.30

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
OXYBUTYNIN CHLORIDE EXTENDED-RELEASE TABLETS	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 33(4)

Current DocID: GUID-DD0E3172-3C2F-43E5-8370-61671C2F9796_11_en-US

DOI: https://doi.org/10.31003/USPNF_M59502_11_01

DOI ref: [76y7w](#)