

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-F7E1A832-837D-44DC-8365-99875A252434_4_en-US
 DOI: https://doi.org/10.31003/USPNF_M59240_04_01
 DOI Ref: 8c9no

© 2025 USPC
 Do not distribute

Oxcarbazepine

$C_{15}H_{12}N_2O_2$ 252.27

5H-Dibenz[b,f]azepine-5-carboxamide, 10,11-dihydro-10-oxo-;

10,11-Dihydro-10-oxo-5H-dibenz[b,f]azepine-5-carboxamide CAS RN®: 28721-07-5; UNII: VZI5B1W380.

DEFINITION

Oxcarbazepine contains NLT 98.0% and NMT 102.0% of oxcarbazepine ($C_{15}H_{12}N_2O_2$), calculated on the anhydrous basis.

IDENTIFICATION

Change to read:

- A. **[▲ SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197K](#)** ▲ (CN 1-MAY-2020)

[NOTE—If the spectrum obtained shows differences, dissolve the substance to be examined in chloroform, and evaporate to dryness. Compare the spectrum of the residue to that of a similarly prepared [USP Oxcarbazepine RS](#).]

- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: 6.8 g/L of monobasic potassium phosphate in water. For each liter prepared, add 2 mL of triethylamine, and mix. Adjust with phosphoric acid to a pH of 6.0 ± 0.1 .

Mobile phase: Methanol, acetonitrile, and *Buffer* (11:8:31)

Standard solution: 0.1 mg/mL of [USP Oxcarbazepine RS](#) in *Mobile phase*

Sample solution: 0.1 mg/mL of Oxcarbazepine in *Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing L1

Column temperature: 50°

Flow rate: 1.5 mL/min

Injection volume: 10 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of oxcarbazepine ($C_{15}H_{12}N_2O_2$) in the portion of Oxcarbazepine taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_S = concentration of [USP Oxcarbazepine RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Oxcarbazepine in the *Sample solution* (mg/mL)

Acceptance criteria: 98.0%–102.0% on the anhydrous basis

IMPURITIES

• [RESIDUE ON IGNITION \(281\)](#): NMT 0.1%

• **ORGANIC IMPURITIES, PROCEDURE 1**

[*NOTE*—If oxcarbazepine related compound A and oxcarbazepine related compound B are known process impurities, *Organic Impurities, Procedure 2* is recommended.]

Mobile phase: Prepare as directed in the Assay.

System suitability solution: 0.1 mg/mL each of [USP Oxcarbazepine RS](#) and [USP Carbamazepine RS](#) in *Mobile phase*

Standard solution: 0.25 µg/mL of [USP Oxcarbazepine RS](#) in *Mobile phase*

Sample solution: 0.5 mg/mL of Oxcarbazepine in *Mobile phase*

Chromatographic system: Proceed as directed in the Assay, except to use a run time 10 times the retention time of oxcarbazepine.

System suitability

Samples: *System suitability solution* and *Standard solution*

Suitability requirements

Resolution: NLT 8.0 between oxcarbazepine and carbamazepine, *System suitability solution*

Relative standard deviation: NMT 10.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Oxcarbazepine taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak response of each impurity from the *Sample solution*

r_S = peak response of oxcarbazepine from the *Standard solution*

C_S = concentration of [USP Oxcarbazepine RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Oxcarbazepine in the *Sample solution* (mg/mL)

F = relative response factor (see [Table 1](#))

Acceptance criteria: See [Table 1](#).

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Oxcarbazepine	1.0	1.0	—
Carbamazepine ^a	1.7	1.9	0.5
Oxcarbazepine related compound E	2.1	1.2	0.05
Methoxycarbamazepine ^b	2.5	1.6	0.05
Carbamazepine related compound B ^c	7.4	1.3	0.05

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Methoxydibenzazepine ^d	7.9	1.5	0.05
Any individual unspecified impurity	—	1.0	0.05
Total impurities	—	—	1.0

^a 5H-Dibenz[b,f]azepine-5-carboxamide.

^b 10-Methoxy-5H-Dibenz[b,f]azepine-5-carboxamide.

^c 5H-Dibenz[b,f]azepine.

^d 10-Methoxy-5H-Dibenz[b,f]azepine.

• **ORGANIC IMPURITIES, PROCEDURE 2**

Buffer A: 0.004 mol/L of monobasic potassium phosphate and 0.063 mol/L of dibasic sodium phosphate

Buffer B: To 1 L of 3.6 g/L edetate disodium in water add 1 L of *Buffer A*.

Diluent: 1.8 g/L of ascorbic acid in water

Solution A: Acetonitrile, tetrahydrofuran, *Buffer B*, and water (1:2:2:15)

Solution B: Acetonitrile, tetrahydrofuran, *Buffer B*, and water (6:1:1:2)

Mobile phase: See [Table 2](#).

Table 2

Time (min)	Solution A (%)	Solution B (%)
0	80	20
1	80	20
29	30	70
30	30	70
33	80	20
42	80	20

System suitability solution: 2 µg/mL each of [USP Oxcarbazepine Related Compound A RS](#), [USP Oxcarbazepine Related Compound B RS](#), [USP Oxcarbazepine Related Compound D RS](#), and [USP Oxcarbazepine Related Compound E RS](#) in a 1:1 mixture of acetonitrile and *Diluent*

Standard stock solution: 0.1 mg/mL of [USP Oxcarbazepine RS](#) in acetonitrile

Standard solution: 2 µg/mL of [USP Oxcarbazepine RS](#) in a 1:1 mixture of acetonitrile and *Diluent*

Sample solution: 1.0 mg/mL of Oxcarbazepine in a 1:1 mixture of acetonitrile and *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 240 nm

Column: 4.6-mm × 25-cm; 3-µm packing L1

Column temperature: 50°

Flow rate: 0.8 mL/min

Injection volume: 50 µL

System suitability

Samples: System suitability solution and Standard solution

Suitability requirements

Resolution: NLT 1.0 between oxcarbazepine related compound A and oxcarbazepine related compound B; NLT 1.2 between oxcarbazepine related compound D and oxcarbazepine related compound E, *System suitability solution*

Relative standard deviation: NMT 5.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Oxcarbazepine taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak response of each impurity from the *Sample solution*

r_S = peak response of oxcarbazepine from the *Standard solution*

C_S = concentration of [USP Oxcarbazepine RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Oxcarbazepine in the *Sample solution* (mg/mL)

F = relative response factor (see [Table 3](#))

Acceptance criteria: See [Table 3](#). [NOTE—Disregard any peak below 0.03%.]

Table 3

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Oxcarbazepine related compound F ^a	0.76	0.59	0.2
Oxcarbazepine	1.0	—	—
<i>N</i> -Carbamoyl oxcarbazepine ^b	1.1	0.91	0.05
Oxcarbazepine related compound A ^c	1.2	1.1	0.2
Oxcarbazepine related compound B ^d	1.3	1.1	0.1
Dibenzazepinodione ^e	1.7	2.0	0.1
Oxcarbazepine related compound D ^f	2.3	1.7	0.2
Oxcarbazepine related compound E	2.4	3.3	0.05
Any individual unspecified impurity	—	1.0	0.05
Total impurities	—	—	1.0

^a 10,11-Dioxo-10,11-dihydro-5*H*-dibenzo[*b,f*]azepine-5-carboxamide.

^b *N*-Carbamoyl-10-oxo-10,11-dihydro-5*H*-dibenzo[*b,f*]azepine-5-carboxamide.

^c *N*-Formyl-10-oxo-10,11-dihydro-5*H*-dibenzo[*b,f*]azepine-5-carboxamide.

^d *N*-Acetyl-10-oxo-10,11-dihydro-5*H*-dibenzo[*b,f*]azepine-5-carboxamide.

^e 5*H*-Dibenzo[*b,f*]azepine-10,11-dione.

^f 10-(10-Oxo-10,11-dihydro-5H-dibenzo[b,f]azepine-5-carboxamido)-5H-dibenzo[b,f]azepine-5-carboxamide.

SPECIFIC TESTS

- [WATER DETERMINATION, Method 1a \(921\)](#): NMT 0.5%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed containers. Store at controlled room temperature.
- **LABELING:** If a test for *Organic Impurities* other than *Procedure 1* is used, the labeling states the test with which the article complies.
- [USP REFERENCE STANDARDS \(11\)](#):

[USP Oxcarbazepine RS](#)

[USP Carbamazepine RS](#)

[USP Oxcarbazepine Related Compound A RS](#)

N-Formyl-10-oxo-10,11-dihydro-5H-dibenzo[b,f]azepine-5-carboxamide.

$C_{16}H_{12}N_2O_3$ 280.28

[USP Oxcarbazepine Related Compound B RS](#)

N-Acetyl-10-oxo-10,11-dihydro-5H-dibenzo[b,f]azepine-5-carboxamide.

$C_{17}H_{14}N_2O_3$ 294.30

[USP Oxcarbazepine Related Compound C RS](#)

10-(10-Oxo-10,11-dihydro-5H-dibenzo[b,f]azepine-5-carboxamido)-5H-dibenzo[b,f]azepine-5-carboxamide.

$C_{30}H_{22}N_4O_3$ 486.52

[USP Oxcarbazepine Related Compound D RS](#)

10(11H)-Oxo-5H-Dibenzo[b,f]azepine.

$C_{14}H_{11}NO$ 209.24

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
OXCARBAZEPINE	Documentary Standards Support	SM42020 Small Molecules 4
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 38(2)

Current DocID: GUID-F7E1A832-837D-44DC-8365-99875A252434_4_en-US

DOI: https://doi.org/10.31003/USPNF_M59240_04_01

DOI ref: [8c9no](#)