

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-May-2021
Document Type: USP Monographs
DocId: GUID-0689650C-A41E-46DB-A714-20A506CC9FAB_3_en-US
DOI: https://doi.org/10.31003/USPNF_M59244_03_01
DOI Ref: y1vhv

© 2025 USPC
Do not distribute

Oxcarbazepine Tablets

DEFINITION

Oxcarbazepine Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of oxcarbazepine ($C_{15}H_{12}N_2O_2$).

IDENTIFICATION

Change to read:

- **A.** ▲ The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.▲ (USP 1-May-2021)
- **B.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

Change to read:

• PROCEDURE

Buffer: 6.8 g/L of [monobasic potassium phosphate](#) in [water](#). Add 2 mL of [triethylamine](#). Adjust with [phosphoric acid](#) to a pH of 6.0.

Diluent: [Methanol](#) and [water](#) (80:20)

Mobile phase: [Methanol](#), [acetonitrile](#), and *Buffer* (22:16:62)

Standard stock solution: 0.5 mg/mL of [USP Oxcarbazepine RS](#) in *Diluent*. Sonication may be used to aid in dissolution.

Standard solution: 0.1 mg/mL of [USP Oxcarbazepine RS](#) in *Mobile phase* from the *Standard stock solution*

Sample stock solution: Nominally equivalent to 1.2 mg/mL of oxcarbazepine from a portion of finely powdered Tablets (NLT 20), prepared as follows. Transfer a weighed quantity of powdered Tablets, equivalent to 600 mg of oxcarbazepine, to a 500-mL volumetric flask. Add *Diluent* to fill 50% of the final volume. Sonicate for 15 min with intermittent swirling, cool to room temperature, and dilute with *Diluent* to volume. Pass this solution through a suitable glass filter of 2- μ m pore size, and discard the first portion of the filtrate.

Sample solution: ▲ Nominally▲ (USP 1-May-2021) 0.1 mg/mL of oxcarbazepine in *Mobile phase* from a portion of the filtrate obtained from the *Sample stock solution*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 215 nm. ▲ For *Identification A*, use a diode array detector in the range of 210–400 nm.▲ (USP 1-May-2021)

Column: 4.6-mm \times 25-cm; 5- μ m packing [L1](#)

Flow rate: 1.5 mL/min

Injection volume: 10 μ L

Temperatures

Sample: 5°

Column: 50°

▲**Run time:** NLT 1.6 times the retention time of oxcarbazepine▲ (USP 1-May-2021)

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: ▲NMT 1.0%▲ (USP 1-May-2021)

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of oxcarbazepine ($C_{15}H_{12}N_2O_2$) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of [USP Oxcarbazepine RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of oxcarbazepine in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

- [Dissolution \(711\)](#).

Test 1

Medium

For Tablets labeled to contain 150 mg: 0.3% (w/v) [sodium dodecyl sulfate](#) in [water](#); 900 mL, deaerated

For Tablets labeled to contain 300 mg: 0.6% (w/v) [sodium dodecyl sulfate](#) in [water](#); 900 mL, deaerated

For Tablets labeled to contain 600 mg: 1.0% (w/v) [sodium dodecyl sulfate](#) in [water](#); 900 mL, deaerated

Apparatus 2: 60 rpm

Times: 30 and 60 min

Standard stock solution: 0.35 mg/mL of [USP Oxcarbazepine RS](#) in [methanol](#)

Standard solution: Dilute the *Standard stock solution* with the corresponding *Medium* to obtain a final concentration of 0.0175 mg/mL of [USP Oxcarbazepine RS](#).

Sample solution: Use portions of the solution under test passed through a suitable filter of 0.45- μm pore size. The volume of the solution under test withdrawn must be replaced by the same volume of corresponding *Medium*. Dilute with the appropriate *Medium* if necessary, according to the Tablet strength, to obtain a final concentration similar to that of the *Standard solution*.

Instrumental conditions

Mode: UV-Vis

Analytical wavelength: 256 nm

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of oxcarbazepine ($\text{C}_{15}\text{H}_{12}\text{N}_2\text{O}_2$) dissolved at 30 min (Q_{30}):

$$Q_{30} = (A_u/A_s) \times (C_s/L) \times D \times V \times 100$$

Calculate the percentage of the labeled amount of oxcarbazepine ($\text{C}_{15}\text{H}_{12}\text{N}_2\text{O}_2$) dissolved at 60 min (Q_{60}):

$$Q_{60} = [(A_u/A_s) \times (C_s/L) \times D \times V \times 100] + [Q_{30} \times (V_s/V)]$$

A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution*

C_s = concentration of the *Standard solution* (mg/mL)

L = label claim (mg/Tablet)

D = dilution factor of the *Sample solution*

V = volume of *Medium*, 900 mL

V_s = volume of the solution under test withdrawn (mL)

Tolerances: NLT 70% (Q) of the labeled amount of oxcarbazepine is dissolved in 30 min; NLT 80% (Q) of the labeled amount of oxcarbazepine is dissolved in 60 min.

Test 2: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 2*.

Medium

For Tablets labeled to contain 150 mg: 0.3% (w/v) [sodium dodecyl sulfate](#) in [water](#); 900 mL, deaerated

For Tablets labeled to contain 300 mg: 0.6% (w/v) [sodium dodecyl sulfate](#) in [water](#); 900 mL, deaerated

For Tablets labeled to contain 600 mg: 1.0% (w/v) [sodium dodecyl sulfate](#) in [water](#); 900 mL, deaerated

Apparatus 2: 60 rpm

Times: 30 and 60 min

Standard stock solution: 3.3 mg/mL of [USP Oxcarbazepine RS](#) in [methanol](#). [NOTE—This solution is stable for 22 h at 10°.]

Standard solution: Dilute the *Standard stock solution* with the corresponding *Medium*, according to the Tablet strength, to obtain a final concentration of $(L/900)$ mg/mL, where L is the label claim in mg/Tablet.

Sample solution: Use portions of the solution under test passed through a suitable filter of 0.45- μm pore size. The volume of the solution under test withdrawn must be replaced by the same volume of corresponding *Medium*.

Instrumental conditions

Mode: UV-Vis

Analytical wavelength: 304 nm

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of oxcarbazepine ($\text{C}_{15}\text{H}_{12}\text{N}_2\text{O}_2$) dissolved at 30 min (Q_{30}):

$$Q_{30} = (A_u/A_s) \times (C_s/L) \times D \times V \times 100$$

Calculate the percentage of the labeled amount of oxcarbazepine ($\text{C}_{15}\text{H}_{12}\text{N}_2\text{O}_2$) dissolved at 60 min (Q_{60}):

$$Q_{60} = [(A_u/A_s) \times (C_s/L) \times D \times V \times 100] + [Q_{30} \times (V_s/V)]$$

A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution*

C_s = concentration of the *Standard solution* (mg/mL)

L = label claim (mg/Tablet)

D = dilution factor of the *Sample solution*

V = volume of *Medium*, 900 mL

V_s = volume of the solution under test withdrawn (mL)

Tolerances

For Tablets labeled to contain 150 or 300 mg: NLT 70% (Q) of the labeled amount of oxcarbazepine is dissolved in 30 min; NLT 80% (Q) of the labeled amount of oxcarbazepine is dissolved in 60 min.

For Tablets labeled to contain 600 mg: NLT 50% (Q) of the labeled amount of oxcarbazepine is dissolved in 30 min; NLT 80% (Q) of the labeled amount of oxcarbazepine is dissolved in 60 min.

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meet the requirements

IMPURITIES

[NOTE—On the basis of the synthetic route, perform either *Organic Impurities, Procedure 1* or *Organic Impurities, Procedure 2*. If methoxycarbamazepine is a potential degradation product, *Procedure 1* is recommended. If carbamazepinedione or dibenzazepinodione is a potential degradation product, *Procedure 2* is recommended.]

Change to read:

- [ORGANIC IMPURITIES, PROCEDURE 1](#)

Buffer: Prepare as directed in the Assay.

Diluent: [Methanol](#) and [water](#) (60:40)

Mobile phase: [Methanol](#), [acetonitrile](#), and *Buffer* (29:21:75)

System suitability solution: 0.5 mg/mL of [USP Oxcarbazepine RS](#) and 1.0 $\mu\text{g}/\text{mL}$ of [USP Carbamazepine RS](#) in *Mobile phase*

Standard solution: 0.5 $\mu\text{g}/\text{mL}$ of [USP Oxcarbazepine RS](#) in *Mobile phase*

Sample stock solution: Nominally equivalent to 1.2 mg/mL of oxcarbazepine from a portion of finely powdered Tablets (NLT 20), prepared as follows. Transfer a weighed quantity of powdered Tablets, equivalent to 600 mg of oxcarbazepine, to a 500-mL volumetric flask. Add *Diluent* to fill 50% of the final volume. Sonicate for 15 min with intermittent swirling, cool to room temperature, and dilute with *Diluent* to volume. Pass this solution through a suitable glass filter of 2- μm pore size, and discard the first portion of the filtrate.

Sample solution: ▲Nominally 500 $\mu\text{g}/\text{mL}$ ▲ (USP 1-May-2021) of oxcarbazepine from the *Sample stock solution* in *Mobile phase*

Chromatographic system: Proceed as directed in the Assay, ▲except for the *Run time*.

Run time: NLT 10 times the retention time of oxcarbazepine▲ (USP 1-May-2021)

System suitability

Samples: System suitability solution and Standard solution

[NOTE—See [Table 1](#) for relative retention times.]

Suitability requirements

Resolution: NLT 8.0 between oxcarbazepine and carbamazepine, System suitability solution

Relative standard deviation: NMT 10.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of any individual degradation product in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

r_u = peak response of each individual degradation product (USP 1-May-2021) from the Sample solution

r_s = peak response of oxcarbazepine from the Standard solution

C_s = concentration of [USP Oxcarbazepine RS](#) in the Standard solution (μg/mL) (USP 1-May-2021)

C_u = nominal concentration of oxcarbazepine in the Sample solution (μg/mL) (USP 1-May-2021)

F = relative response factor for the corresponding degradation product (USP 1-May-2021) (see [Table 1](#))

Acceptance criteria: See [Table 1](#).

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Oxcarbazepine	1.0	1.0	—
Carbamazepine	1.6	1.5	0.5
Dibenzazepinone ^a	2.0	1.0	0.05
Methoxycarbamazepine ^b	2.3	1.3	0.05
Any individual unspecified degradation product	—	1.0	0.10
Total impurities	—	—	0.75

^a 10(11H)-Oxo-5H-dibenz[b,f]azepine.

^b 10-Methoxy-5H-dibenz[b,f]azepine-5-carboxamide.

Change to read:

- **ORGANIC IMPURITIES, PROCEDURE 2**

Buffer A: 4.2 g of [tris\(hydroxymethyl\)amino methane](#) and 0.2 g of [edetate disodium](#) in 1 L of [water](#)

Buffer B: 18 g of [tris\(hydroxymethyl\)amino methane](#) and 0.9 g of [edetate disodium](#) in 1 L of [water](#)

Diluent: [Acetonitrile](#) and 1.8 g/L of [ascorbic acid](#) in [water](#) (1:99)

Solution A: [Acetonitrile](#), [tetrahydrofuran](#), and Buffer A (5:10:85)

Solution B: [Acetonitrile](#), [tetrahydrofuran](#), and Buffer B (70:10:20)

Mobile phase: See [Table 2](#).

Table 2

Time (min)	Solution A (%)	Solution B (%)
0	95	5
33.0	30	70
33.1	95	5
45.0	95	5

System suitability stock solution: 1 µg/mL of [USP Oxcarbazepine Related Compound C RS](#) and 12 µg/mL of [USP Carbamazepine RS](#) in [acetonitrile](#). Sonication may be used to aid in dissolution. [NOTE—The water bath temperature should not exceed 23°.]

System suitability solution: 0.05 µg/mL of [USP Oxcarbazepine Related Compound C RS](#) and 0.6 µg/mL of [USP Carbamazepine RS](#)▲ (USP 1-May-2021) prepared as follows. Transfer a suitable volume of *System suitability stock solution* to a volumetric flask containing 50% of the final volume of *Diluent*. Allow the solution to reach ambient temperature, and dilute with [acetonitrile](#) to volume.

Standard stock solution: 12 µg/mL of [USP Carbamazepine RS](#) in [acetonitrile](#). Sonication may be used to aid in dissolution. [NOTE—The water bath temperature should not exceed 23°.]

Standard solution: 0.6 µg/mL of [USP Carbamazepine RS](#) from *Standard stock solution* prepared as follows. Transfer a suitable volume of *Standard stock solution* to a flask containing 50% of the final volume of *Diluent* and 20% of the final volume of [acetonitrile](#). Allow the solution to reach ambient temperature, and dilute with [acetonitrile](#) to volume.

Sample stock solution: ▲Nominally equivalent to▲ (USP 1-May-2021) 1.5 mg/mL of oxcarbazepine from a portion of finely powdered Tablets (NLT 20) prepared as follows. Transfer a weighed quantity of powdered Tablets, equivalent to about 375 mg of oxcarbazepine, to a 250-mL volumetric flask. Add 150 mL of [acetonitrile](#), and sonicate for 15 min. Shake for 15 min, and dilute with [acetonitrile](#) to volume. Mix, and allow the suspension to settle for 30 min. Use the supernatant. [NOTE—The water bath temperature should not exceed 23°.]

Sample solution: ▲Nominally 300 µg/mL▲ (USP 1-May-2021) of oxcarbazepine from the *Sample stock solution* prepared as follows. Transfer a suitable volume of *Sample stock solution* to a volumetric flask containing 50% of the final volume of *Diluent* and 20% of the final volume of [acetonitrile](#). Allow the solution to warm to ambient temperature, and dilute with [acetonitrile](#) to volume. Pass a portion of the solution through a suitable filter of 0.45-µm pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 3.0-mm × 25-cm; 5-µm packing [L1](#)

Flow rate: 0.5 mL/min

Injection volume: 20 µL

Temperatures

Sample: 5°

Column: 35°

System suitability

Samples: *System suitability solution* and *Standard solution*

[NOTE—See [Table 3](#) for relative retention times.]

Suitability requirements

Resolution: NLT 1.2 between oxcarbazepine related compound C and carbamazepine, *System suitability solution*

Relative standard deviation: NMT 15%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of any individual degradation product in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak response of each individual ▲degradation product▲ (USP 1-May-2021) from the *Sample solution*

r_S = peak response of carbamazepine from the *Standard solution*

C_s = concentration of [USP Carbamazepine RS](#) in the *Standard solution* Δ ($\mu\text{g/mL}$) Δ (USP 1-May-2021)

C_u = nominal concentration of oxcarbazepine in the *Sample solution* Δ ($\mu\text{g/mL}$) Δ (USP 1-May-2021)

F = relative response factor for the corresponding Δ degradation product Δ (USP 1-May-2021) (see [Table 3](#))

Acceptance criteria: See [Table 3](#).

Table 3

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Carbamazepinedione ^a	0.72	0.70	0.2
Oxcarbazepine	1.0	1.0	—
Oxcarbazepine related compound C ^b	1.3	—	—
Carbamazepine	1.4	1.0	0.5
Dibenzazepinodione ^c	1.7	2.8	0.2
Any individual unspecified degradation product	—	1.0	0.1
Total impurities	—	—	1.0

^a 10,11-Dioxo-10,11-dihydro-5*H*-dibenzo[*b,f*]azepine-5-carboxamide.

^b For system suitability and identification purposes only. Process impurity, not included in total.

^c 5*H*-Dibenzo[*b,f*]azepine-10,11-dione.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed containers. Store at controlled room temperature.
- **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used. If a test for *Organic Impurities* other than *Procedure 1* is used, the labeling states the test with which the article complies.

- [USP REFERENCE STANDARDS \(11\)](#)

[USP Carbamazepine RS](#)

[USP Oxcarbazepine RS](#)

[USP Oxcarbazepine Related Compound C RS](#)

Acridin-9(10*H*)-one.

$C_{13}H_9NO$ 195.22

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
OXCARBAZEPINE TABLETS	Documentary Standards Support	SM42020 Small Molecules 4
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 45(3)

Current DocID: GUID-0689650C-A41E-46DB-A714-20A506CC9FAB_3_en-US

DOI: https://doi.org/10.31003/USPNF_M59244_03_01

DOI ref: y1vhv

OFFICIAL