

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-374CF166-272D-4E38-964A-359C91FA070F_3_en-US
 DOI: https://doi.org/10.31003/USPNF_M59110_03_01
 DOI Ref: p1649

© 2025 USPC
 Do not distribute

Oxandrolone

$C_{19}H_{30}O_3$ 306.44

2-Oxaandrostan-3-one, 17-hydroxy-17-methyl-, (5α,17β)-.

17β-Hydroxy-17-methyl-2-oxa-5α-androstan-3-one CAS RN®: 53-39-4; UNII: 7H6TM3CT4L.

» Oxandrolone contains not less than 98.0 percent and not more than 102.0 percent of $C_{19}H_{30}O_3$, calculated on the dried basis.

Packaging and storage—Preserve in well-closed, light-resistant containers.

USP Reference Standards (11)—

[USP Oxandrolone RS](#)

[USP Oxandrolone Related Compound A RS](#)

(7,8-Didehydro-oxandrolone) or (17β-hydroxy-17α-methyl-2-oxa-5α-androst-7-en-3-one).

[USP Oxandrolone Related Compound B RS](#)

(4-Oxa-isomer) or (17β-hydroxy-17α-methyl-4-oxa-5α-androstan-3-one).

[USP Oxandrolone Related Compound C RS](#)

Anhydro-oxandrolone or (17,17-dimethyl-18-nor-2-oxa-5α-androst-13-en-3-one).

Identification—

Change to read:

A: ▲ [Spectroscopic Identification Tests \(197\), Infrared Spectroscopy: 197K](#) ▲ (CN 1-May-2020) .

B: The retention time of the major peak in the chromatogram of the Assay preparation corresponds to that in the chromatogram of the Standard preparation, as obtained in the Assay.

SPECIFIC ROTATION (781S): between -18° and -24°.

Test solution: 10 mg per mL, in chloroform.

LOSS ON DRYING (731):—Dry it at 105° for 3 hours: it loses not more than 1.0% of its weight.

RESIDUE ON IGNITION (281): not more than 0.2%.

Related compounds—

Solution A: acetonitrile.

Solution B: water.

Mobile phase—Use variable mixtures of **Solution A** and **Solution B** as directed for *Chromatographic system*. Make adjustments if necessary (see *System Suitability* under [Chromatography \(621\)](#)).

Blank solution—Prepare a mixture of **Solution A** and **Solution B** (50:50).

Standard stock solution—Dissolve accurately weighed quantities of [USP Oxandrolone Related Compound A RS](#), [USP Oxandrolone Related Compound B RS](#), [USP Oxandrolone Related Compound C RS](#), and [USP Oxandrolone RS](#) in acetonitrile, and dilute quantitatively, and stepwise if necessary, with acetonitrile to obtain a solution having known concentrations of about 4 µg of [USP Oxandrolone Related Compound A RS](#) per mL, 120 µg of [USP Oxandrolone Related Compound B RS](#) per mL, 4 µg of [USP Oxandrolone Related Compound C RS](#) per mL, and 200 µg of [USP Oxandrolone RS](#) per mL. [NOTE—Sonicate if necessary to dissolve.]

Standard solution—Dilute 1.0 mL of the **Standard stock solution** with 4.0 mL of acetonitrile and 5.0 mL of water, and mix.

Test solution—Weigh accurately 40 mg of Oxandrolone into a 10-mL volumetric flask, dissolve in 5.0 mL of acetonitrile using an ultrasonic bath, dilute with water to volume, and mix.

[NOTE—The **Test solution**, the **Standard solution**, and the **Blank solution** are made up fresh and injected immediately.]

Chromatographic system—The liquid chromatograph is equipped with a 210-nm detector and a 4.6-mm × 25-cm column that contains 5-μm packing L1. The column temperature is maintained at 40°. The flow rate is about 0.7 mL per minute. The chromatograph is programmed as follows.

Time (minutes)	Solution A (%)	Solution B (%)	Elution
0	50	50	equilibration
0–30	50→100	50→0	linear gradient
30–32	100→50	0→50	linear gradient
32–40	50	50	re-equilibration

Chromatograph the *Standard solution*, and record the peak responses as directed for *Procedure*: the resolution, *R*, between oxandrolone related compound A and oxandrolone related compound B is not less than 1.5, and the resolution, *R*, between oxandrolone related compound B and oxandrolone is not less than 2.0; the tailing factor is not more than 1.5; and the relative standard deviation for replicate injections is not more than 5.0%.

Change to read:

Procedure—Separately inject equal volumes (about 50 μL) of the *Blank solution*, the *Standard solution*, and the *Test solution* into the chromatograph, record the chromatograms, and measure the peak responses. Calculate the percentage of oxandrolone related compound A in the portion of Oxandrolone taken by the formula:

$$(C/W)(r_u/r_s)$$

in which *C* is the concentration, in μg per mL, of oxandrolone related compound A in the *Standard solution*; *W* is the weight, in mg, of Oxandrolone taken to prepare the *Test solution*; *r_u* is the peak area of oxandrolone related compound A in the chromatogram of the *Test solution*; and *r_s* is the peak area obtained for oxandrolone related compound A in the chromatogram of the *Standard solution*.

Calculate the percentage of oxandrolone related compound C, methyltestosterone, Δ1-mestalone, specified unknown impurity 1, and each impurity eluting at a relative retention time greater than or equal to 2.2 (relative to retention time of oxandrolone) by the formula:

$$(1/F)(C/W)(r_u/r_s)$$

in which *F* is the relative response factor (see accompanying table for values); *C* is the concentration, in μg per mL, of oxandrolone related compound C in the *Standard solution*; *W* is the weight, in mg, of Oxandrolone taken to prepare the *Test solution*; *r_u* is the peak area of oxandrolone related compound C, methyltestosterone, Δ1-mestalone, specified unknown impurity 1, or each impurity eluting at a relative retention time greater than or equal to 2.2 in the chromatogram of the *Test solution*; and *r_s* is the peak area obtained for oxandrolone related compound C in the chromatogram of the *Standard solution*.

Calculate the percentage of each impurity, except oxandrolone related compound A, oxandrolone related compound C, methyltestosterone, Δ1-mestalone, specified unknown impurity 1, and other impurities eluting at relative retention times greater than or equal to 2.2 by the formula:

$$(1/F)(C/W)(r_u/r_s)$$

in which *F* is the relative response factor for each impurity (see accompanying table for values); *C* is the concentration, in μg per mL, of [USP Oxandrolone RS](#) in the *Standard solution*; *W* is the weight, in mg, of Oxandrolone taken to prepare the *Test solution*; *r_u* is the peak area of each impurity, in the chromatogram of the *Test solution*, other than peak areas of oxandrolone related compound A, oxandrolone related compound C, methyltestosterone, Δ1-mestalone, specified unknown impurity 1, and other impurities eluting at relative retention times greater than or equal to 2.2; and *r_s* is the peak area obtained for oxandrolone in *Standard solution*. Disregard any peak observed in the chromatogram obtained from the *Blank solution*. Disregard any impurity peak that is less than 0.05%. The impurities meet the requirements specified in the accompanying table.

Compound	Relative Retention Time	Relative Response Factor (F)	Limit (%)
Secodicarboxylic acid ¹	0.46	4.1	0.1

Compound	Relative Retention Time	Relative Response Factor (F)	Limit (%)
7,8-Didehydro-oxandrolone ² (Oxandrolone related compound A)	0.90	—	0.1
4-Oxa-isomer ³ (Oxandrolone related compound B)	0.94	1.4	0.3
Oxandrolone	1.00	—	—
Oxandrolone open lactone methyl ester ⁴	1.09	1.5	0.1
Secoacid anhydride ⁵	1.12	2.5	0.1
Methyltestosterone ⁶	1.25	0.8 ^a	0.1
17-epi-Oxandrolone ⁷	1.33	1.0	0.3
Δ1-Mestalone ⁸	1.48	1.3 ^a	0.1
4-Oxa-isomer (beta epimer) ⁹	1.52	1.4	0.3
Specified unknown impurity 1	1.63	0.6 ^a	0.1
Oxandrolone-17-acetate ¹⁰	2.14	1.9	0.1
Anhydro-oxandrolone ¹¹ (Oxandrolone related compound C)	3.29	—	0.5
Individual unknown impurity	—	1.0	0.1
Total impurities	—	—	1.0

^a F values relative to oxandrolone related compound C.

¹ 17β-Hydroxy-17α-methyl-2-nor-5α-androstan-1,3-dioic acid.

² 17β-Hydroxy-17α-methyl-2-oxa-5α-androst-7-en-3-one.

³ 17β-Hydroxy-17α-methyl-4-oxa-5α-androstan-3-one.

⁴ Methyl 1,17β-dihydroxy-17α-methyl-1,3-seco-2-nor-5α-androstan-3-oate.▲ (ERR 1-Mar-2019)

⁵ 17β-Hydroxy-17α-methyl-2-oxa-5α-androstan-1,3-dione.

⁶ 17β-Hydroxy-17α-methyl-5α-androst-4-ene-3-one.

⁷ 17α-Hydroxy-17β-methyl-2-oxa-5α-androstan-3-one.

⁸ 17β-Hydroxy-17α-methyl-5α-androst-1-ene-3-one.

⁹ 17β-Hydroxy-17α-methyl-4-oxa-5β-androstan-3-one.

¹⁰ 17β-Hydroxy-17α-methyl-2-oxa-5α-androstan-3-one 17-acetate.

¹¹ 17,17-Dimethyl-18-nor-2-oxa-5α-androst-13-en-3-one.

Assay—

Mobile phase—Prepare a filtered and degassed mixture of water and acetonitrile (50:50). Make adjustments if necessary (see System Suitability under [Chromatography \(621\)](#)).

Standard preparation—Dissolve an accurately weighed quantity of [USP Oxandrolone RS](#) in acetonitrile, and dilute quantitatively, and stepwise if necessary, with acetonitrile to obtain a solution having a known concentration of about 3 mg per mL. [NOTE—Sonicate if necessary to dissolve.]

Assay preparation—Transfer to a suitable volumetric flask an accurately weighed quantity of Oxandrolone, and dissolve in and dilute with acetonitrile to volume to obtain a solution having a concentration of about 3 mg per mL.

Chromatographic system (see [CHROMATOGRAPHY \(621\)](#))—The liquid chromatograph is equipped with a 210-nm detector and a 4.6-mm × 25-cm column that contains packing L1. The flow rate is about 0.8 mL per minute. Chromatograph the **Standard preparation**, and record the peak responses as directed for **Procedure**: the column efficiency is not less than 2000 theoretical plates; the tailing factor is not more than 2.0; and the relative standard deviation for replicate injections is not more than 2.0%.

Procedure—Separately inject equal volumes (about 20 μ L) of the **Standard preparation** and the **Assay preparation** into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the quantity, in mg, of $C_{19}H_{30}O_3$ in the portion of Oxandrolone taken by the formula:

$$VC(r_u/r_s)$$

in which V is the final volume, in mL, of the **Assay preparation**; C is the concentration, in mg per mL, of [USP Oxandrolone RS](#) in the **Standard preparation**; and r_u and r_s are the peak responses obtained from the **Assay preparation** and the **Standard preparation**, respectively.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
OXANDROLONE	Documentary Standards Support	SM52020 Small Molecules 5
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM52020 Small Molecules 5

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 33(2)

Current DocID: GUID-374CF166-272D-4E38-964A-359C91FA070F_3_en-US

DOI: https://doi.org/10.31003/USPNF_M59110_03_01

DOI ref: [p1649](#)