

Status: Currently Official on 16-Feb-2025

Official Date: Official as of 01-Mar-2019

Document Type: USP Monographs

DocId: GUID-78E81F31-73C0-40F3-9EAD-D152DDC292B5_5_en-US

DOI: https://doi.org/10.31003/USPNF_M1428_05_01

DOI Ref: fe159

© 2025 USPC

Do not distribute

Oxaliplatin for Injection

DEFINITION

Oxaliplatin for Injection is a sterile, lyophilized mixture of Oxaliplatin and Lactose Monohydrate. It contains NLT 90.0% and NMT 110.0% of the labeled amount of oxaliplatin ($C_8H_{14}N_2O_4$ Pt).

IDENTIFICATION

- A. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

Add the following:

- ▲ B. The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay. ▲2S

(USP41)

ASSAY

Change to read:

• PROCEDURE

[NOTE—Use vigorous shaking and very brief sonication to dissolve the substance to be examined. Inject the *Sample solution* within 20 min of preparation. Use polypropylene HPLC autosampler vials.]

Acidified water: Adjust [water](#) with [phosphoric acid](#) to a pH of 3.0.

Mobile phase: Acetonitrile and Acidified water (1:99)

System suitability solution: 0.1 mg/mL each of [USP Oxaliplatin RS](#) and [USP Oxaliplatin System Suitability RS](#) in [water](#). [NOTE—[USP Oxaliplatin System Suitability RS](#) is [SP-4-2-(1R-trans)]-(1,2-cyclohexanediamine-N,N') dichloridoplatinum(II).]

Standard solution: 0.1 mg/mL of [USP Oxaliplatin RS](#) in [water](#)

Sample solution: Nominally equivalent to 0.1 mg/mL of oxaliplatin obtained by constituting a suitable number of vials of Oxaliplatin for Injection with the appropriate amount of [water](#)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm. ▲For *Identification B*, use a diode array detector in the range of 200–400 nm. ▲2S (USP41)

Column: 4.6-mm × 25-cm; 5-μm packing [L1](#)

Column temperature: 40°

Flow rate: 1.2 mL/min

Injection volume: 20 μL

System suitability

Samples: System suitability solution and Standard solution

[NOTE—The relative retention times for [SP-4-2-(1R-trans)]-(1,2-cyclohexanediamine-N,N') dichloridoplatinum(II) and oxaliplatin are about 0.9 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between the peaks of [SP-4-2-(1R-trans)]-(1,2-cyclohexanediamine-N,N') dichloridoplatinum(II) and oxaliplatin, System suitability solution

Tailing factor: NMT 2.0 for the oxaliplatin peak, System suitability solution

Relative standard deviation: NMT 1.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of oxaliplatin ($C_8H_{14}N_2O_4$ Pt) in the portion of Oxaliplatin for Injection taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_u = peak response from the *Sample solution* r_s = peak response from the *Standard solution* C_s = concentration of [USP Oxaliplatin RS](#) in the *Standard solution* (mg/mL) C_u = nominal concentration of oxaliplatin in the *Sample solution* (mg/mL)**Acceptance criteria:** 90.0%–110.0%**PERFORMANCE TESTS**

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meets the requirements

IMPURITIES**Change to read:**

- [LIMIT OF OXALIC ACID](#)

[**NOTE**—Use vigorous shaking and very brief sonication to dissolve the substance to be examined. Inject the *Sample solution* within 20 min of preparation. Use polypropylene HPLC autosampler vials.]

Buffer: Add 1.36 g of [monobasic potassium phosphate](#) ▲2S (USP41) to 10 mL of 10% [tetrabutylammonium hydroxide](#) in [water](#), and dilute with [water](#) to 1000 mL. Adjust with [phosphoric acid](#) to a pH of 6.0.

Mobile phase: Acetonitrile and *Buffer* (1:4)

Standard stock solution: 0.06 mg/mL of [USP Oxaliplatin Related Compound A RS](#) in [water](#). [**NOTE**—[USP Oxaliplatin Related Compound A RS](#) is available as oxalic acid dihydrate.]

Standard solution: 15 µg/mL of [USP Oxaliplatin Related Compound A RS](#) in [water](#), from the *Standard stock solution*

System suitability stock solution: 0.05 mg/mL of [sodium nitrate](#) in [water](#)

System suitability solution: 1.0 µg/mL of [sodium nitrate](#) and 15 µg/mL of oxaliplatin related compound A in [water](#), from the *System suitability stock solution* and *Standard stock solution*, respectively

Sensitivity solution: ▲1.5 µg/mL of [USP Oxaliplatin Related Compound A RS](#) in [water](#), from the *Standard solution* ▲2S (USP41)

Sample solution: Nominally equivalent to 2.0 mg/mL of oxaliplatin in [water](#) from Oxaliplatin for Injection

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 205 nm

Column: 4.6-mm × 25-cm; 5-µm packing [L1](#)

Column temperature: 40°

Flow rate: 2 mL/min

Injection volume: 20 µL

System suitability

Samples: *Standard solution*, *System suitability solution*, and *Sensitivity solution*

[**NOTE**—The relative retention times for the sodium nitrate and oxalic acid peaks are about 0.6 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between the oxalic acid and sodium nitrate peaks, *System suitability solution*

Relative standard deviation: NMT 3.0% for the oxalic acid peak, *Standard solution*

Signal-to-noise ratio: NLT 10, *Sensitivity solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of oxalic acid in the portion of Oxaliplatin for Injection taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r_1}/M_{r_2}) \times 100$$

r_u = peak response of oxalic acid from the *Sample solution*

r_s = peak response of oxalic acid from the *Standard solution*

C_s = concentration of [USP Oxaliplatin Related Compound A RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of oxaliplatin in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of anhydrous oxalic acid, 90.03 M_{r2} = molecular weight of [USP Oxaliplatin Related Compound A RS](#), 126.07**Acceptance criteria:** NMT 0.5%**Change to read:****• LIMIT OF (SP-4-2)-DIAQUA[(1R,2R)-CYCLOHEXANE-1,2-DIAMINE-N,N']PLATINUM**

[NOTE—Use vigorous shaking and very brief sonication to dissolve the substance to be examined. Inject the *Sample solution* within 20 min of preparation. Use polypropylene HPLC autosampler vials.]

Buffer: Dissolve 1.36 g of [▲monobasic potassium phosphate](#) ▲2S (USP41) and 1 g of [sodium 1-heptanesulfonate](#) in 1 L of [water](#). Adjust with [phosphoric acid](#) to a pH of 3.0.

Mobile phase: Acetonitrile and *Buffer* (1:4)

System suitability solution: 2 mg/mL of [USP Oxaliplatin RS](#) in 0.005 M [sodium hydroxide](#). Allow this solution to stand at room temperature for at least 5 days. [NOTE—Sonicate if necessary.] Transfer 5 mL of this solution into a 50-mL volumetric flask, and dilute with [water](#) to volume. [NOTE—The preparation of the *System suitability solution* forms diaquodiaminocyclohexaneplatinum dimer and (SP-4-2)-diaqua[(1R,2R)-cyclohexane-1,2-diamine-N,N']platinum.]

Standard solution: 0.0125 mg/mL of [USP Oxaliplatin Related Compound B RS](#) prepared as follows. Transfer [USP Oxaliplatin Related Compound B RS](#) to a suitable volumetric flask, add 25% of the final volume of methanol, and sonicate for approximately 30 min to dissolve. Allow to cool, if necessary, and dilute with [water](#) to volume. [NOTE—When preparing the solution, [USP Oxaliplatin Related Compound B RS](#) is converted to (SP-4-2)-diaqua[(1R,2R)-cyclohexane-1,2-diamine-N,N']platinum.]

Sample solution: Use the *Sample solution* from the test for *Limit of Oxalic Acid*.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 215 nm**Column:** 4.6-mm × 25-cm; 5-μm packing [L1](#)**Column temperature:** 40°**Flow rate:** 2 mL/min**Injection volume:** 20 μL**System suitability****Samples:** *System suitability solution* and *Standard solution*

[NOTE—The relative retention times for (SP-4-2)-diaqua[(1R,2R)-cyclohexane-1,2-diamine-N,N']platinum and diaquodiaminocyclohexaneplatinum dimer are about 1.0 and 1.5, respectively.]

Suitability requirements

Resolution: NLT 2.0 between (SP-4-2)-diaqua[(1R,2R)-cyclohexane-1,2-diamine-N,N']platinum and diaquodiaminocyclohexaneplatinum dimer, *System suitability solution*

Relative standard deviation: NMT 3.0%, *Standard solution*

Analysis**Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of (SP-4-2)-diaqua[(1R,2R)-cyclohexane-1,2-diamine-N,N']platinum in the portion of Oxaliplatin for Injection taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak response of (SP-4-2)-diaqua[(1R,2R)-cyclohexane-1,2-diamine-N,N']platinum from the *Sample solution*

r_S = peak response of (SP-4-2)-diaqua[(1R,2R)-cyclohexane-1,2-diamine-N,N']platinum from the *Standard solution*

C_S = concentration of [USP Oxaliplatin Related Compound B RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of oxaliplatin in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of (SP-4-2)-diaqua[(1R,2R)-cyclohexane-1,2-diamine-N,N']platinum, 345.30

M_{r2} = molecular weight of [USP Oxaliplatin Related Compound B RS](#), 433.28

Acceptance criteria: NMT 0.5%**Change to read:**

LIMIT OF RELATED COMPOUND C AND UNSPECIFIED IMPURITIES

[**NOTE**—Use vigorous shaking and very brief sonication to dissolve the substance to be examined. Inject the *Sample solution* within 20 min of preparation. Use polypropylene HPLC autosampler vials.]

Mobile phase: Prepare as directed in the Assay.

Standard stock solution: 0.1 mg/mL each of [USP Oxaliplatin RS](#) and [USP Oxaliplatin Related Compound C RS](#) in [water](#)

Standard solution: 0.01 mg/mL each of [USP Oxaliplatin RS](#) and [USP Oxaliplatin Related Compound C RS](#) in [water](#), from the *Standard stock solution*

System suitability stock solution: 0.1 mg/mL of [USP Oxaliplatin System Suitability RS](#) in methanol. Sonicate for approximately 10 min to aid the dissolution.

System suitability solution: Transfer 10 mL each of the *Standard stock solution* and the *System suitability stock solution* into a 100-mL volumetric flask, and dilute with [water](#) to volume.

Sample solution: Use the *Sample solution* from the test for *Limit of Oxalic Acid*.

Chromatographic system: Proceed as directed in the Assay, except for the *Injection volume*.

Injection volume: 10 μ L

System suitability

Samples: *Standard solution* and *System suitability solution*

Suitability requirements

Resolution: NLT 2.0 between [SP-4-2-(1*R*-*trans*)]-(1,2-cyclohexanediamine-*N,N'*) dichloridoplatinum(II) and oxaliplatin, *System suitability solution*

Tailing factor: NMT 2.0 for the oxaliplatin peak, *System suitability solution*

Relative standard deviation: NMT 3.0% each for the oxaliplatin and oxaliplatin related compound C peaks, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of oxaliplatin related compound C in the portion of Oxaliplatin for Injection taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of oxaliplatin related compound C from the *Sample solution*

r_S = peak response of oxaliplatin related compound C from the *Standard solution*

C_S = concentration of [USP Oxaliplatin Related Compound C RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of oxaliplatin in the *Sample solution* (mg/mL)

Calculate the percentage of each unspecified impurity in the portion of Oxaliplatin for Injection taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of each impurity from the *Sample solution*

r_S = peak response of oxaliplatin from the *Standard solution*

C_S = concentration of [USP Oxaliplatin RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of oxaliplatin in the *Sample solution* (mg/mL)

Acceptance criteria: See [Table 1](#).

Table 1

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Oxaliplatin related compound C [▲] _{▲2S} (<i>USP41</i>)	0.6	0.3

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
[SP-4-2-(1R-trans)]-(1,2-Cyclohexanediamine-N,N') dichloridoplatinum(II) ^a	0.8	—
Oxaliplatin	1.0	—
Any individual unspecified impurity	—	0.2
Total impurities ^b	—	1.5

▲ 2S (USP41)

^a The relative retention time is included for system suitability purposes only.

^b Includes oxalic acid, (SP-4-2)-diaqua[(1R,2R)-cyclohexane-1,2-diamine-N,N']platinum, oxaliplatin related compound C, and the total of the individual unspecified impurities.

SPECIFIC TESTS

- **pH (791)**: 4.0–7.0 using a polymer combination electrode, determined in a solution constituted as directed in the labeling
- **PARTICULATE MATTER IN INJECTIONS (788)**: It meets the requirements for small-volume injections.
- **CONSTITUTED SOLUTION**: At the time of use, it meets the requirements in *Injections and Implanted Drug Products (1), Product Quality Tests Common to Parenteral Dosage Forms, Specific Tests, Completeness and Clarity of Solutions*.
- **BACTERIAL ENDOTOXINS TEST (85)**: NMT 1.0 USP Endotoxin Unit/mg of oxaliplatin
- **STERILITY TESTS (71)**: Meets the requirements
- **WATER DETERMINATION (921), Method I**: NMT 4.0%
- **OTHER REQUIREMENTS**: It meets the requirements in *Injections and Implanted Drug Products (1)*.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE**: Preserve as described in *Packaging and Storage Requirements (659), Injection Packaging, Packaging for Constitution*. Store at controlled room temperature.

- **LABELING**: Label it to indicate that it is to be diluted with a suitable parenteral vehicle before intravenous infusion.

Change to read:

- **USP REFERENCE STANDARDS (11)**.

▲ (CN 1-May-2018)

▲ 2S (USP41)

USP Oxaliplatin RS

Oxalic acid dihydrate.

$C_2H_2O_4 \cdot 2H_2O$ 126.07

USP Oxaliplatin Related Compound B RS

[SP-4-2-(1R-trans)]-(1,2-Cyclohexanediamine-N,N') dinitrato platinum(II).

$C_6H_{14}N_4O_6Pt$ 433.28

USP Oxaliplatin Related Compound C RS

[1R-trans-(1,2-Cyclohexanediamine-N,N')]-trans-dihydroxido-[oxalato(2)-O,O']platinum(IV).

$C_8H_{16}N_2O_6Pt$ 431.30

USP Oxaliplatin System Suitability RS

[SP-4-2-(1R-trans)]-(1,2-Cyclohexanediamine-N,N') dichloridoplatinum(II).

$C_6H_{14}Cl_2N_2Pt$ 380.17

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
OXALIPLATIN FOR INJECTION	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 43(4)

Current DocID: GUID-78E81F31-73C0-40F3-9EAD-D152DDC292B5_5_en-US

Previous DocID: GUID-78E81F31-73C0-40F3-9EAD-D152DDC292B5_2_en-US

DOI: https://doi.org/10.31003/USPNF_M1428_05_01

DOI ref: fei59

OFFICIAL