

Status: Currently Official on 16-Feb-2025

Official Date: Official as of 01-Feb-2022

Document Type: USP Monographs

DocId: GUID-70767DCA-5024-4057-8AF1-11EA5803C782_3_en-US

DOI: https://doi.org/10.31003/USPNF_M58905_03_01

DOI Ref: rpk89

© 2025 USPC

Do not distribute

Orphenadrine Citrate Extended-Release Tablets

DEFINITION

Orphenadrine Citrate Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of orphenadrine citrate ($C_{18}H_{23}NO \cdot C_6H_8O_7$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: 5.8 g/L of monobasic ammonium phosphate. Adjust with phosphoric acid to a pH of 3.2.

Mobile phase: Acetonitrile and *Buffer* (40:60)

System suitability solution: 0.1 mg/mL of [USP Orphenadrine Citrate RS](#) and 0.01 mg/mL each of [USP Orphenadrine Related Compound B RS](#) and [USP Orphenadrine Related Compound C RS](#), in *Mobile phase*

Standard solution: 0.1 mg/mL of [USP Orphenadrine Citrate RS](#)

Sample stock solution: Nominally 0.5 mg/mL of orphenadrine citrate prepared as follows. Transfer a quantity of powder equivalent to NLT 100 mg of orphenadrine citrate, from finely powdered Tablets (NLT 20), to a suitable volumetric flask. Add 50% of the flask volume of *Mobile phase*. Sonicate for 5 min and shake for 15 min. Dilute with *Mobile phase* to volume. Pass through a suitable filter.

Sample solution: Nominally 0.1 mg/mL of orphenadrine citrate in *Mobile phase* from the *Sample stock solution*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 225 nm

Column: 3.9-mm × 30-cm; 10-μm L1 packing

Flow rate: 2 mL/min

Injection volume: 20 μL

System suitability

Samples: *System suitability solution* and *Standard solution*

Suitability requirements

Resolution: NLT 1.2 between orphenadrine and orphenadrine related compound C; NLT 2.0 between orphenadrine citrate and orphenadrine related compound B, *System suitability solution*

Tailing factor: NMT 2.0, *Standard solution*

Relative standard deviation: NMT 2.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of orphenadrine citrate ($C_{18}H_{23}NO \cdot C_6H_8O_7$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_S = concentration of [USP Orphenadrine Citrate RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of orphenadrine citrate in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS**• DISSOLUTION (711).****Test 1****Medium:** Water; 900 mL, deaerated**Apparatus 2:** 50 rpm**Times:** 1, 2, 6, and 12 h**Buffer:** 5.8 g/L of monobasic ammonium phosphate in water**Mobile phase:** Acetonitrile and *Buffer* (40:60). Adjust with phosphoric acid to a pH of 3.2 ± 0.1 .**Standard stock solution:** 1 mg/mL of [USP Orphenadrine Citrate RS](#) in *Mobile phase*. Sonication may be used to promote dissolution.**Standard solution** 0.1 mg/mL of [USP Orphenadrine Citrate RS](#) in *Medium* from a suitable volume of *Standard stock solution* and *Medium***Sample solution:** Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size and discard the first few mL of the filtrate.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 225 nm**Column:** 3.9-mm \times 30-cm; 10- μ m packing L1**Flow rate:** 2 mL/min**Injection volume:** 20 μ L**System suitability****Sample:** *Standard solution***Suitability requirements****Tailing factor:** NMT 2.0**Relative standard deviation:** NMT 2.0%**Analysis:****Samples:** *Standard solution* and *Sample solution*Calculate the concentration (C_i) of orphenadrine citrate ($C_{18}H_{23}NO \cdot C_6H_8O_7$) dissolved in the portion of the sample withdrawn at each time point (i) (mg/mL):

$$C_i = (r_U/r_S) \times C_S$$

 r_U = peak response from the *Sample solution* r_S = peak response from the *Standard solution* C_S = concentration of the *Standard solution* (mg/mL)Calculate the percentage of the labeled amount of orphenadrine citrate ($C_{18}H_{23}NO \cdot C_6H_8O_7$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_S)] + (C_1 \times V_S)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{C_3 \times [V - (2 \times V_S)] + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{C_4 \times [V - (3 \times V_S)] + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

 C_i = concentration of orphenadrine citrate in the portion of the sample withdrawn at time point (i) (mg/mL) V = volume of *Medium*, 900 mL L = label claim (mg/Tablet) V_S = volume of the *Sample solution* withdrawn at each time point (mL)**Tolerances:** See [Table 1](#).**Table 1**

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	10-40
2	2	30-50
3	6	50-80
4	12	NLT 80

The percentages of the labeled amount of orphenadrine citrate ($C_{18}H_{23}NO \cdot C_6H_8O_7$) dissolved at the times specified conform to

[Dissolution \(711\), Acceptance Table 2.](#)

Test 2: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 2*.

Medium: Water; 900 mL

Apparatus 2: 50 rpm

Times: 1, 4, and 12 h

Standard solution: 0.02 mg/mL of [USP Orphenadrine Citrate RS](#) in *Medium*

Sample solution: Withdraw 10 mL of the solution under test from each vessel at each specified time point. Replace 10 mL of *Medium* in each vessel. Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size. Transfer 1.0 mL of the filtrate to a 50-mL volumetric flask, and dilute with *Medium* to volume.

Blank: *Medium*

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: 210 nm

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of orphenadrine citrate ($C_{18}H_{23}NO \cdot C_6H_8O_7$) in the sample withdrawn from the vessel at each time point (i):

$$C_i = (A_u/A_s) \times C_s$$

A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution*

C_s = concentration of the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amounts (Q_i) of orphenadrine citrate ($C_{18}H_{23}NO \cdot C_6H_8O_7$) dissolved at each time point (i):

$$\text{Result}_1 = C_i \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_s)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

C_i = concentration of orphenadrine citrate in the portion of the sample withdrawn at time point (i) (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_s = volume of the *Sample solution* withdrawn at each time point (mL)

Tolerances: See [Table 2](#).

Table 2

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	10-40
2	4	40-70
3	12	NLT 80

The percentages of the labeled amount of orphenadrine citrate ($C_{18}H_{23}NO \cdot C_6H_8O_7$) dissolved at the times specified conform to

Dissolution (711), Acceptance Table 2.

Test 3: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 3*.

Solution A: 0.45 M [monobasic potassium phosphate](#) prepared as follows. Mix 6.12 g of [monobasic potassium phosphate](#) and 12 mL of 10 N [sodium hydroxide](#). Dilute with [water](#) to 100 mL.

Acid stage medium: 0.1 N [hydrochloric acid](#); 800 mL

Buffer stage medium: pH 7.5 phosphate buffer (add 100 mL of *Solution A* to the *Acid stage medium* after 1 h); 900 mL

Apparatus 2: 50 rpm

Times: 1 h in *Acid stage medium*; 4 and 10 h in *Buffer stage medium*. The time in the *Buffer stage medium* includes the time in the *Acid stage medium*.

Standard solution: 0.11 mg/mL of [USP Orphenadrine Citrate RS](#) in *Acid stage medium*

Sample solution: Pass a portion of the solution under test through a suitable filter.

Blank: *Acid stage medium*

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: 232 nm

Cell: 1 cm

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration (C_i) of orphenadrine citrate ($C_{18}H_{23}NO \cdot C_6H_8O_7$) in the sample withdrawn from the vessel at each time point (i):

$$C_i = (A_u/A_s) \times C_s$$

A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution*

C_s = concentration of the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amounts (Q_i) of orphenadrine citrate ($C_{18}H_{23}NO \cdot C_6H_8O_7$) dissolved at each time point (i):

$$\text{Result}_1 = C_i \times V_A \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V_B - V_s)] + (C_1 \times V_s)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times [V_B - (2 \times V_s)]) + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

C_i = concentration of orphenadrine citrate in the portion of the sample withdrawn at time point (i) (mg/mL)

V_A = volume of *Acid stage medium*, 800 mL

L = label claim (mg/Tablet)

V_B = volume of *Buffer stage medium*, 900 mL

V_s = volume of the *Sample solution* withdrawn at each time point (mL)

Tolerances: See [Table 3](#).**Table 3**

Time Point (<i>i</i>)	Time (h)	Amount Dissolved (%)
1	1	40–55
2	4	50–70
3	10	NLT 70

The percentages of the labeled amount of orphenadrine citrate ($C_{18}H_{23}NO \cdot C_6H_8O_7$) dissolved at the times specified conform to

[Dissolution \(711\), Acceptance Table 2](#).

- **UNIFORMITY OF DOSAGE UNITS (905):** Meet the requirements

IMPURITIES

• ORGANIC IMPURITIES

Buffer, Mobile phase, System suitability solution, Sample solution, Chromatographic system, and System suitability: Proceed as directed in the Assay.

Analysis

Sample: *Sample solution*

Calculate the percentage of each degradation product in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (1/F) \times 100$$

r_u = peak response of each degradation product from the *Sample solution*

r_s = peak response of orphenadrine from the *Sample solution*

F = relative response factor for each degradation product (see [Table 4](#))

Acceptance criteria: See [Table 4](#).

Table 4

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Citric acid ^a	0.4	—	—
Orphenadrine related compound C	0.9	1.5	0.5
Orphenadrine citrate	1	—	—
Orphenadrine related compound B	1.3	1.3	0.5
2-Methylbenz hydro ^b	2.1	2.1	0.5
2-Methylbenzophenone ^c	4	1.0	0.5

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Any individual unspecified degradation product	—	1.0	0.2
Total degradation products	—	—	1.5

^a The peak is due to counter ion and is not to be reported or included in total degradation products.

^b Also known as Phenyl(o-tolyl)methanol.

^c Also known as Phenyl(o-tolyl)methanone.

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE:** Preserve in well-closed, tight, light-resistant containers, and store at controlled room temperature.
- LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.

Change to read:

- USP REFERENCE STANDARDS (11).**

[USP Orphenadrine Citrate RS](#)

[USP Orphenadrine Related Compound B RS](#)

N-Ethyl-*N,N*-dimethyl [2-▲(2-▲ (ERR 1-Feb-2022) methylbenzhydryloxy)ethyl]ammonium chloride; also known as *N*-Ethyl-*N,N*-dimethyl-2-[phenyl(▲2▲ (ERR 1-Feb-2022) -tolyl)methoxy]ethanaminium chloride.

$C_{20}H_{28}ClNO$ 333.90

[USP Orphenadrine Related Compound C RS](#)

N-Methyl [2-(2-methylbenzhydryloxy)ethyl]amine hydrochloride;

Also known as *N*-Methyl-2-[phenyl(o-tolyl)methoxy]ethanamine hydrochloride.

$C_{17}H_{22}ClNO$ 291.82

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
ORPHENADRINE CITRATE EXTENDED-RELEASE TABLETS	Documentary Standards Support	SM42020 Small Molecules 4
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 44(1)

Current DocID: GUID-70767DCA-5024-4057-8AF1-11EA5803C782_3_en-US

DOI: https://doi.org/10.31003/USPNF_M58905_03_01

DOI ref: [rpk89](#)