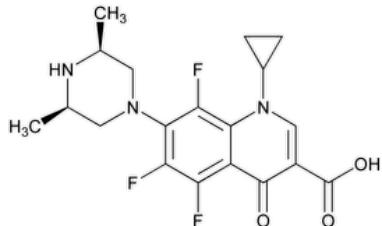


Status: Currently Official on 16-Feb-2025

Official Date: Official as of 01-May-2022

Document Type: USP Monographs

DocId: GUID-89C55335-5F85-475A-AF00-C3C0F8C225DD\_6\_en-US


DOI: [https://doi.org/10.31003/USPNF\\_M58770\\_06\\_01](https://doi.org/10.31003/USPNF_M58770_06_01)

DOI Ref: oyx0o

© 2025 USPC

Do not distribute

## Orbifloxacin

 $C_{19}H_{20}F_3N_3O_3$  395.381-Cyclopropyl-7-(*cis*-3,5-dimethyl-1-piperazinyl)-5,6,8-trifluoro-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid CAS RN®: 113617-63-3; UNII: 660932TPY6.» Orbifloxacin contains not less than 98.5 percent and not more than 101.5 percent of  $C_{19}H_{20}F_3N_3O_3$ , calculated on the anhydrous basis.**Packaging and storage**—Preserve in well-closed containers. Store at room temperature.**USP REFERENCE STANDARDS (11)**—[USP Orbifloxacin RS](#)**Identification**—**A:** [Spectroscopic/Identification Tests \(197\), Infrared Spectroscopy: 197K](#)**B:** The retention time of the major peak in the chromatogram of the *Assay preparation* corresponds to that in the chromatogram of the *Standard preparation*, as obtained in the *Assay*.**Change to read:****C:** ▲ [X-Ray Powder Diffraction \(941\)](#)—▲ (CN 1-May-2022) The X-ray diffraction pattern conforms to that of [USP Orbifloxacin RS](#), similarly determined.**MICROBIAL ENUMERATION TESTS (61)**—The total combined molds and yeasts count does not exceed 100 cfu per g.**pH (791)**: between 6.5 and 7.8, in a solution containing 10 mg per mL.**WATER DETERMINATION, Method Ic (921)**: between 1.5% and 2.9%.**RESIDUE ON IGNITION (281)**: not more than 0.1%.**Related compounds**—*Buffer, Mobile phase, System suitability preparation, Standard preparation, and Chromatographic system*—Prepare as directed in the *Assay*.*Standard solution*—Dilute, quantitatively with *Buffer*, the *Standard preparation* to obtain a solution having a known concentration of about 0.00004 mg per mL.*Test solution*—Transfer about 40 mg of Orbifloxacin, accurately weighed, to a 200-mL volumetric flask, dissolve in and dilute with *Buffer* to volume, and mix.*Chromatographic system* (see [CHROMATOGRAPHY \(621\)](#))—Inject the *Buffer* as directed for *Procedure* to verify that there are no interfering peaks.*Procedure*—Separately inject equal volumes (about 10  $\mu$ L) of the *Standard solution* and the *Test solution* into the chromatograph, record the chromatograms, and measure the area responses for the major peaks. Calculate the percentage of related compounds in the portion of Orbifloxacin taken by the formula:

$$20,000(C_s)(r_i/r_s)(1/F)(1/W)$$

in which  $C_s$  is the concentration, in mg per mL, of orbifloxacin in the *Standard solution*;  $r_i$  is the peak area response for each impurity obtained from the *Test solution*;  $r_s$  is the peak area response for the orbifloxacin peak obtained from the *Standard solution*;  $F$  is the relative response factor for each impurity, as presented in [Table 1](#); and  $W$  is the sample weight taken to prepare the *Test solution* (mg).

**Table 1**

| Component/Impurity                                                                                                   | Approximate Relative Retention Time | Relative Response Factor (F) | Limit % |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------|---------|
| cis, cis-1-Cyclopropyl-5,7-bis(3,5-dimethyl-1-piperazinyl)-6,8-difluoro-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid | 0.5                                 | 0.36                         | NMT 0.2 |
| cis-1-Cyclopropyl-7-(3,5-dimethyl-1-piperazinyl)-5,6,8-trifluoro-4(1H)-quinolinone                                   | 0.65                                | 0.27                         | NMT 0.2 |
| 7-[(2-Aminopropyl)amino]-1-cyclopropyl-5,6-difluoro-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid                     | 0.75                                | 0.49                         | NMT 0.2 |
| Orbifloxacin                                                                                                         | 1.0                                 | 1.00                         | —       |
| 1-Cyclopropyl-7-(3,5-dimethyl-1-piperazinyl)-6,8-difluoro-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid               | 1.4                                 | 0.84                         | NMT 0.2 |
| cis-1-Cyclopropyl-7-(3,5-dimethyl-1-piperazinyl)-6,8-difluoro-1,4-dihydro-5-hydroxy-4-oxo-3-quinolinecarboxylic acid | 2.7                                 | 0.73                         | NMT 0.2 |
| cis-1-Cyclopropyl-5-(3,5-dimethyl-1-piperazinyl)-6,7,8-trifluoro-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid        | 3.6                                 | 0.11                         | NMT 0.2 |
| 1-Cyclopropyl-5,6,7,8-tetrafluoro-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid                                       | 6.8                                 | 0.16                         | NMT 0.2 |
| Unknown                                                                                                              | —                                   | 1.0                          | —       |
| Total known and unknown                                                                                              | —                                   | —                            | NMT 0.4 |

**Assay—**

**Buffer**—In a 2-L flask, dissolve about 11.8 g of sodium citrate in 1600 mL of water, and mix. Add 180 mL of acetic acid, and mix. Adjust with 6 N sodium hydroxide to a pH of 3.5, dilute with water to about 2 L, and mix.

**Mobile phase**—Prepare a filtered and degassed mixture of **Buffer**, methanol, and dioxane (86:11:4). Make adjustments if necessary (see **System Suitability** under [Chromatography \(621\)](#)).

**Standard stock preparation**—Dissolve in **Buffer** an accurately weighed quantity of [USP Orbifloxacin RS](#) to obtain a solution having a known concentration of about 0.2 mg per mL.

**Standard preparation**—Accurately transfer a quantity of **Standard stock preparation**, and dilute with **Buffer** to obtain a solution having a known concentration of about 0.02 mg per mL.

**System suitability preparation**—Dissolve about 40 mg of methyl 4-aminobenzoate in 2 mL of methanol, and dilute with **Buffer** to 200 mL. Pipet 10.0 mL of this solution and 10.0 mL of **Standard stock preparation** into a 100-mL volumetric flask. Dilute with **Buffer** to volume, and mix.

**Assay preparation**—Transfer about 40 mg of Orbifloxacin accurately weighed, to a 200-mL volumetric flask, dissolve in and dilute with *Buffer* to volume, and mix. Dilute with *Buffer* an aliquot of the resulting solution to obtain a solution having a known concentration of about 0.02 mg per mL.

**Chromatographic system** (see [CHROMATOGRAPHY \(621\)](#))—The liquid chromatograph is equipped with a 290-nm detector and 4.6-mm × 3.0-cm column that contains 3-μm packing L1. The flow rate is about 1.0 mL per minute. Prior to injecting the *System suitability preparation*, flush the column with approximately 50 mL of a mixture of acetonitrile and water (9:1). Chromatograph the *System suitability preparation*, and record the peak response as directed for *Procedure*: the relative retention times are about 1.3 for methyl 4-aminobenzoate and 1.0 for orbifloxacin; the resolution, *R*, between methyl 4-aminobenzoate and orbifloxacin is not less than 2; the tailing factor is not more than 1.8; and the relative standard deviation for replicate injections is not more than 2.0%.

**Procedure**—Separately inject equal volumes (about 10 μL) of the *Standard preparation* and the *Assay preparation* into the chromatograph, record the chromatographs, and measure the area responses for the major peaks. Calculate the quantity, in mg, of  $C_{19}H_{20}F_3N_3O_3$  in the portion of Orbifloxacin taken by the formula:

$$2000C(r_u/r_s)$$

in which *C* is the concentration, in mg per mL, of [USP Orbifloxacin RS](#) in the *Standard preparation*; and  $r_u$  and  $r_s$  are the peak area responses obtained from the *Assay preparation* and the *Standard preparation*, respectively.

**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

| Topic/Question             | Contact                                                                     | Expert Committee          |
|----------------------------|-----------------------------------------------------------------------------|---------------------------|
| ORBIFLOXACIN               | <a href="#">Documentary Standards Support</a>                               | SM32020 Small Molecules 3 |
| REFERENCE STANDARD SUPPORT | RS Technical Services<br><a href="mailto:RSTECH@usp.org">RSTECH@usp.org</a> | SM32020 Small Molecules 3 |

**Chromatographic Database Information:** [Chromatographic Database](#)

**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 34(2)

**Current DocID:** [GUID-89C55335-5F85-475A-AF00-C3C0F8C225DD\\_6\\_en-US](#)

**DOI:** [https://doi.org/10.31003/USPNF\\_M58770\\_06\\_01](https://doi.org/10.31003/USPNF_M58770_06_01)

**DOI ref:** [oxy0o](#)