

Status: Currently Official on 16-Feb-2025

Official Date: Official Prior to 2013

Document Type: USP Monographs

DocId: GUID-2A56DBA4-4AF5-4F67-9E00-36C47914AA37_1_en-US

DOI: https://doi.org/10.31003/USPNF_M58780_01_01

DOI Ref: 10yp3

© 2025 USPC

Do not distribute

Orbifloxacin Tablets

» Orbifloxacin Tablets contain not less than 90.0 percent and not more than 110.0 percent of the labeled amount of orbifloxacin ($C_{19}H_{20}F_3N_3O_3$).

Packaging and storage—Preserve in tight containers, and store between 2° and 30°.

Labeling—Label to indicate that it is for veterinary use only.

USP REFERENCE STANDARDS (11)—

[USP Orbifloxacin RS](#)

Identification—

A: [Thin-Layer Chromatographic Identification Test \(201\)](#).

Absorbent: silica gel.

Diluent: a mixture of chloroform, methanol, and glacial acetic acid (8:1:1).

Test solution—Crush 1 Tablet and transfer into a centrifuge tube. Add *Diluent* quantitatively, and mix to obtain a final concentration of about 0.56 mg per mL of orbifloxacin. Centrifuge the solution.

Standard solution—Prepare a solution of [USP Orbifloxacin RS](#) in *Diluent* having a concentration of about 0.56 mg per mL.

Application volume: 5 μ L

Developing solvent system: a mixture of chloroform, methanol, water, and ammonium hydroxide (18:7:1:0.02).

B: The retention time of the major peak in the chromatogram of the *Assay preparation* corresponds to that in the chromatogram of the *Standard preparation*, as obtained in the *Assay*.

DISSOLUTION (711)—

Medium: 0.1 N hydrochloric acid; 1000 mL.

Apparatus 2: 50 rpm.

Time: 30 minutes.

Determine the amount of $C_{19}H_{20}F_3N_3O_3$ dissolved by employing the following procedure.

Standard solution—Prepare a solution of [USP Orbifloxacin RS](#) in *Medium* with a final concentration of about $L/100$, where L is the *Tablet label claim* in mg. Transfer 10.0 mL of this solution to a 100-mL volumetric flask, dilute with *Medium* to volume, and mix.

Test solution—Pass a portion of the solution under test through a suitable 0.8- μ m filter, discarding the first 3 mL.

Procedure—Determine the amount of $C_{19}H_{20}F_3N_3O_3$ dissolved by employing UV absorption at the wavelength of maximum absorbance at about 291 nm on portions of the *Test solution* in comparison with the *Standard solution* using *Medium* as blank. Calculate the amount of orbifloxacin dissolved by the formula:

$$100,000(A_U/A_S)(C_S/L)$$

in which A_U and A_S are the absorbances obtained with the *Test solution* and the *Standard solution*, respectively; C_S is the concentration, in mg per mL, of orbifloxacin in the *Standard solution*; and L is the *Tablet label claim* in mg.

Tolerances—Not less than 80% (Q) of the labeled amount of $C_{19}H_{20}F_3N_3O_3$ is dissolved in 30 minutes.

Uniformity of dosage units (905): meet the requirements.

WATER DETERMINATION, Method Ic (921): between 3.5% and 7.0%.

Test preparation—Accurately weigh 5 Tablets, and transfer into a 50-mL centrifuge tube. Add 25 mL of anhydrous methanol, and cap.

Blank: 25 mL of anhydrous methanol in a 50-mL centrifuge tube.

Procedure—Rotate the *Test preparation* and the *Blank* for 16 hours. Centrifuge. Titrate an equal volume of the *Test preparation* and the *Blank* so that the amount of water titrated will be approximately 1000 μ g to 1500 μ g.

Chromatographic purity—

Buffer, Mobile phase, Standard preparation, System suitability preparation, and Chromatographic system—Prepare as directed in the *Assay*.

Standard solution—Dilute quantitatively with *Buffer* the *Standard preparation* to obtain a solution having a known concentration of about 0.00004 mg per mL.

Test solution—Transfer 10 Tablets into a volumetric flask. Add *Buffer* to fill the flask about 70%, shake for 2 hours, and sonicate for 5 minutes.

Dilute quantitatively, and stepwise if necessary, with *Buffer* to obtain a solution having a concentration of about 0.22 mg per mL. Pass a portion of the solution through a 0.8- μm filter.

Chromatographic system (see [CHROMATOGRAPHY \(621\)](#))—Inject the *Buffer* as directed for *Procedure* to verify that there are no interfering peaks.

Procedure—Separately inject equal volumes (about 10 μL) of the *Standard solution* and the *Test solution* into the chromatograph, record the chromatograms, and measure the area responses for the major peaks. Calculate the percentage of related compounds in the portion of Tablets taken by the formula:

$$100(C_s/C_T)(r/r_s)(1/F)$$

in which C_s is the concentration, in mg per mL, of [USP Orbifloxacin RS](#) in the *Standard solution*; C_T is the concentration, in mg per mL, of the *Test solution*; r is the peak area response for each impurity obtained from the *Test solution*; r_s is the peak area response for the orbifloxacin peak obtained from the *Standard solution*; and F is the relative response factor for each impurity, as presented in [Table 1](#).

Table 1

Component	Relative Retention Time	Relative Response Factor (F)	Limit (%)
cis-1-Cyclopropyl-7-(3,5-dimethyl-1-piperazinyl)-5,6,8-trifluoro-4(1H)-quinolinone	0.57	0.29	NMT 0.5
Orbifloxacin	1.0	1.00	—
cis-1-Cyclopropyl-7-(3,5-dimethyl-1-piperazinyl)-6,8-difluoro-1,4-dihydro-5-hydroxy-4-oxo-3-quinolinecarboxylic acid	2.9	0.71	NMT 0.5
All other related compounds and impurities	—	0.11	NMT 0.5
Total known and unknown	—	—	NMT 1

Assay—

Buffer—In a 2-L flask, dissolve about 11.8 g of sodium citrate in 1600 mL of water, and mix. Add 180 mL of glacial acetic acid, and mix. Adjust with 6 N sodium hydroxide to a pH of 3.5, dilute with water to volume, and mix.

Mobile phase—Prepare a filtered and degassed mixture of *Buffer*, methanol, and dioxane (91:6:4). Make adjustments if necessary (see *System Suitability* under [Chromatography \(621\)](#)).

Standard stock preparation—Dissolve an accurately weighed quantity of [USP Orbifloxacin RS](#) in *Buffer*, and dilute quantitatively, and stepwise if necessary, with *Buffer* to obtain a solution having a known concentration of about 0.2 mg per mL.

Standard preparation—Accurately transfer a quantity of *Standard stock preparation* and dilute quantitatively, and stepwise if necessary, with *Buffer* to obtain a solution having a known concentration of about 0.02 mg per mL.

System suitability preparation—Dissolve about 40 mg of methyl 4-aminobenzoate in 2 mL of methanol, and dilute with *Buffer* to 200 mL. Pipet 10.0 mL of this solution and 10.0 mL of the *Standard stock preparation* into a 100-mL volumetric flask. Dilute with *Buffer* to volume, and mix.

Assay preparation—Transfer 10 Tablets into a volumetric flask. Add *Buffer* to fill the flask about 70%, shake for 2 hours, and sonicate for 5 minutes. Dilute quantitatively, and stepwise if necessary, with *Buffer* to obtain a solution having a known concentration of about 0.02 mg per mL. Pass a portion of the solution through a 0.8- μm filter.

Chromatographic system (see [CHROMATOGRAPHY \(621\)](#))—The liquid chromatograph is equipped with a 290-nm detector and 4.6-mm \times 3-cm column that contains 3- μm packing L1. The flow rate is about 0.8 mL per minute. Chromatograph the *System suitability preparation*, and record the peak response as directed for *Procedure*: the relative retention times are about 1.3 for methyl 4-aminobenzoate and 1.0 for orbifloxacin; the resolution, R , between methyl 4-aminobenzoate and orbifloxacin is not less than 2; the tailing factor is not more than 1.8; and the relative standard deviation for replicate injections is not more than 2.0%.

Procedure—Separately inject equal volumes (about 10 μL) of the *Standard preparation* and the *Assay preparation* into the chromatograph, record the chromatograms, and measure the area responses for the major peaks. Calculate the quantity, in mg, of orbifloxacin ($\text{C}_{19}\text{H}_{20}\text{F}_3\text{N}_3\text{O}_3$)

in the portion of Tablets taken by the formula:

$$C(D_u)(r_u/r_s)$$

in which C is the concentration, in mg per mL, of [USP Orbifloxacin RS](#) in the *Standard preparation*; D_u is the dilution factor of the *Assay preparation*, in mL; and r_u and r_s are the peak area responses obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
ORBIFLOXACIN TABLETS	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 34(2)

Current DocID: [GUID-2A56DBA4-4AF5-4F67-9E00-36C47914AA37_1_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M58780_01_01

DOI ref: [10yp3](#)

OFFICIAL