

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Apr-2022
Document Type: USP Monographs
DocID: GUID-D9E2B38E-5DC5-4D70-B81A-9B6EF8E2D465_5_en-US
DOI: https://doi.org/10.31003/USPNF_M58653_05_01
DOI Ref: 78s10

© 2025 USPC
Do not distribute

Ondansetron Oral Solution

» Ondansetron Oral Solution is a solution of Ondansetron Hydrochloride in a suitable vehicle. It contains not less than 95.0 percent and not more than 105.0 percent of the labeled amount of ondansetron ($C_{18}H_{19}N_3O$).

Packaging and storage—Preserve in well-closed, light-resistant containers.

Change to read:

USP REFERENCE STANDARDS (11)—

[USP Ondansetron Hydrochloride RS](#)

[USP Ondansetron Related Compound A RS](#)

▲3-[(Dimethylamino)methyl]-9-methyl-1,2,3,9-tetrahydro-4H-carbazol-4-one hydrochloride.▲ (ERR 1-Apr-2022)

[USP Ondansetron Related Compound C RS](#)

▲9-Methyl-1,2,3,9-tetrahydro-4H-carbazol-4-one.▲ (ERR 1-Apr-2022)

[USP Ondansetron Related Compound D RS](#)

▲9-Methyl-3-methylene-1,2,3,9-tetrahydro-4H-carbazol-4-one.▲ (ERR 1-Apr-2022)

Identification—

A: Thin-Layer Chromatographic Identification Test (201)—

Test solution—Dilute a portion of Oral Solution with a mixture of methanol and water (50:50) to obtain a solution containing about 0.2 mg of ondansetron per mL.

Standard solution: 0.25 mg per mL in methanol.

Developing solvent system: chloroform, ethyl acetate, methanol, and ammonium hydroxide (90:50:40:1).

B: The retention time of the major peak in the chromatogram of the *Assay preparation* corresponds to that in the chromatogram of the *Standard preparation*, as obtained in the *Assay*.

MICROBIAL ENUMERATION TESTS (61) and TESTS FOR SPECIFIED MICROORGANISMS (62)—It meets the requirements of the tests for absence of *Escherichia coli*. The total aerobic microbial count does not exceed 100 cfu per g, the *Enterobacteriaceae* count does not exceed 10 cfu per g, and the total combined molds and yeasts count does not exceed 50 cfu per g.

DELIVERABLE VOLUME (698): meets the requirements.

pH (791): between 3.3 and 4.0.

Limit of ondansetron related compound D—

Mobile phase—Proceed as directed in the test for *Limit of ondansetron related compound D* under [Ondansetron Hydrochloride](#).

System suitability solution—Dissolve suitable quantities of [USP Ondansetron Related Compound D RS](#) and [USP Ondansetron Related Compound C RS](#) in *Mobile phase*; and dilute quantitatively, and stepwise if necessary, with *Mobile phase* to obtain a solution containing about 0.5 µg per mL and 2 µg per mL, respectively.

Standard solution—Dissolve an accurately weighed quantity of [USP Ondansetron Related Compound D RS](#) in *Mobile phase*; and dilute quantitatively, and stepwise if necessary, with *Mobile phase* to obtain a solution having a known concentration of about 0.5 µg per mL.

Test solution—Quantitatively dilute, if necessary, an accurately measured volume of Oral Solution with *Mobile phase* to obtain a solution containing about 0.8 mg of ondansetron per mL.

Chromatographic system (see [CHROMATOGRAPHY \(621\)](#))—The liquid chromatograph is equipped with a 328-nm detector and a 4.6-mm × 25-cm column that contains packing L10. The flow rate is about 1.5 mL per minute. Chromatograph the *System suitability solution*, and record the peak responses as directed for *Procedure*: the resolution, *R*, between ondansetron related compound D and ondansetron related compound C is not less than 2.0; the tailing factor for ondansetron related compound D is not more than 2.0; and the relative standard deviation for replicate injections is not more than 4.0%.

Procedure—Separately inject equal volumes (about 20 µL) of the *Standard solution* and the *Test solution* into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the percentage of ondansetron related compound D in the

$$100D(C_s/C_A)(r_u/r_s)$$

in which D is the dilution factor for the Oral Solution in the *Test solution*; C_s is the concentration, in μg per mL, of [USP Ondansetron Related Compound D RS](#) in the *Standard solution*; C_A is the concentration, in μg per mL, of ondansetron in the Oral Solution, as determined in the Assay; and r_u and r_s are the peak responses of ondansetron related compound D obtained from the *Test solution* and the *Standard solution*, respectively: not more than 0.1% is found.

Related compounds—

Mobile phase, System suitability solution, and Chromatographic system—Proceed as directed in the Assay under [Ondansetron Hydrochloride](#). *Standard solution*—Prepare as directed for the *Standard preparation*, in the Assay under [Ondansetron Hydrochloride](#).

Test solution—Use the *Assay preparation*.

Procedure—Separately inject equal volumes (about 10 μL) of the *Standard solution* and the *Test solution* into the chromatograph, record the chromatograms, and measure the peak responses. Calculate the percentage of each related compound in the volume of Oral Solution taken by the formula:

$$(293.36/329.83)10,000(1/F)(1/V)(C_s/C_A)(r_u/r_s)$$

in which 293.36 and 329.83 are the molecular weights of ondansetron and anhydrous ondansetron hydrochloride, respectively; F is the relative response factor for each known and unknown impurity (the values of relative response factors [RRF] and the limits can be obtained from [Table 1](#)); V is the volume, in mL, of Oral Solution taken; C_s is the concentration, in mg per mL, on the anhydrous basis, of [USP Ondansetron Hydrochloride RS](#) in the *Standard solution*; C_A is the concentration, in mg per mL, of ondansetron in the Oral Solution; r_u is the peak response for any related compound obtained from the *Test solution*; and r_s is the peak response for ondansetron obtained from the *Standard solution*.

Table 1

Related Compound	Approx. RRT	RRF	Limit (%)
Ondansetron related compound D*	0.34	—	0.1
Imidazole	0.40	0.46	0.2
2-Methyl imidazole	0.53	0.54	0.2
Des-C-methyl ondansetron hydrochloride	0.62	0.76	0.2
<i>N</i> -Desmethyl ondansetron maleate	0.83	0.73	0.2
Ondansetron related compound A	1.2	0.81	0.2
Unknown		1.0	0.2
Total (including ondansetron related compound D)		—	0.5

* Quantified from Limit of related compound D test

Assay—

Mobile phase, System suitability solution, Standard preparation, and Chromatographic system—Proceed as directed in the Assay under [Ondansetron Hydrochloride](#).

Assay preparation—Transfer an accurately measured volume of Oral Solution, equivalent to about 9 mg of ondansetron, to a 100-mL volumetric flask; dilute with *Mobile phase* to volume; and mix.

Chromatographic system (see [CHROMATOGRAPHY \(621\)](#))—The liquid chromatograph is equipped with a 216-nm detector and a 4.6-mm × 25-cm column that contains packing L10. The flow rate is about 1.5 mL per minute. Chromatograph the *System suitability solution*, and record the peak responses as directed for *Procedure*: the relative retention times are about 1.1 for ondansetron related compound A and 1.0 for ondansetron; and the resolution, *R*, between ondansetron related compound A and ondansetron is not less than 1.5. Chromatograph the *Standard preparation*, and record the peak responses as directed for *Procedure*: the tailing factor is not more than 2.0, and the relative standard deviation for replicate injections is not more than 2.0%.

Procedure—Separately inject equal volumes (about 10 μ L) of the *Standard preparation* and the *Assay preparation* into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the quantity, in mg, of ondansetron ($C_{18}H_{19}N_3O$) in each mL of Oral Solution taken by the formula:

$$(293.36/329.83)100(C/V)(r_u/r_s)$$

in which 293.36 and 329.83 are the molecular weights of ondansetron and anhydrous ondansetron hydrochloride, respectively; *C* is the concentration, in mg per mL, on the anhydrous basis, of [USP Ondansetron Hydrochloride RS](#) in the *Standard preparation*; *V* is the volume, in mL, of Oral Solution taken; and r_u and r_s are the peak responses obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
ONDANSETRON ORAL SOLUTION	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 32(1)

Current DocID: [GUID-D9E2B38E-5DC5-4D70-B81A-9B6EF8E2D465_5_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M58653_05_01

DOI ref: [78s10](#)