

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-May-2024
Document Type: USP Monographs
DocId: GUID-6D80D516-BAFC-4FB1-AA45-F8F62824CA25_7_en-US
DOI: https://doi.org/10.31003/USPNF_M58652_07_01
DOI Ref: e6701

© 2025 USPC
Do not distribute

Ondansetron Injection

DEFINITION

Ondansetron Injection is a sterile solution of Ondansetron Hydrochloride in Water for Injection or of Ondansetron in Water for Injection prepared with the aid of Hydrochloric Acid. It may contain suitable buffers and/or tonicity adjusting agents. It contains an amount of Ondansetron Hydrochloride equivalent to NLT 95.0% and NMT 105.0% of the labeled amount of ondansetron ($C_{18}H_{19}N_3O$).

IDENTIFICATION

• A. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

Add the following:

▲ B. The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.▲ (USP 1-May-2024)

ASSAY

Change to read:

• PROCEDURE

▲ **Solution A:** 2.4 g/L of [monobasic sodium phosphate anhydrous](#) and 0.6 g/L of [sodium 1-heptanesulfonate](#) in [water](#). Adjust with [0.5 N sodium hydroxide](#) to a pH of 5.4.

Solution B: [Acetonitrile](#)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	95	5
5	95	5
8	80	20
25	35	65
27	30	70
33	30	70
35	95	5
40	95	5

Diluent: [Acetonitrile](#) and [water](#) (30:70). To each liter of this solution, add 1 mL of [formic acid](#).

Standard solution: 0.1 mg/mL of [USP Ondansetron Hydrochloride RS](#) in *Diluent*

Sample solution: Nominally 0.1 mg/mL of ondansetron from Injection in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 216 nm. For *Identification B*, use a diode array detector in the range of 200–400 nm.

Column: 4.6-mm × 25-cm; 5-μm packing [L11](#)

Temperatures

Autosampler: 15°

Column: 40°

Flow rate: 1 mL/min

Injection volume: 10 μL

System suitability

Sample: Standard solution

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 1.0%▲ (USP 1-May-2024)

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of ondansetron ($C_{18}H_{19}N_3O$) in the portion of Injection taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak response of ondansetron from the *Sample solution*

r_S = peak response of ondansetron from the *Standard solution*

C_S = concentration▲ (USP 1-May-2024) of [USP Ondansetron Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of ondansetron in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of ondansetron, ▲293.37▲ (USP 1-May-2024)

M_{r2} = molecular weight of anhydrous ondansetron hydrochloride, 329.83

Acceptance criteria: 95.0%–105.0%

IMPURITIES

Delete the following:

▲• **LIMIT OF ONDANSETRON RELATED COMPOUND D**▲ (USP 1-May-2024)

Change to read:

• **ORGANIC IMPURITIES**

▲Solution A, Solution B, Mobile phase, Diluent, and Chromatographic system: Proceed as directed in the Assay.

System suitability solution: 1 mg/mL of [USP Ondansetron Hydrochloride RS](#) and 0.002 mg/mL of [USP Ondansetron Related Compound G](#) in Diluent

Standard solution: 0.002 mg/mL each of [USP Ondansetron Hydrochloride RS](#) and [USP Ondansetron Related Compound D RS](#) in Diluent

Sensitivity solution: 0.001 mg/mL each of [USP Ondansetron Hydrochloride RS](#) and [USP Ondansetron Related Compound D RS](#) from the Standard solution in Diluent

Sample solution: Nominally 1.0 mg/mL of ondansetron from Injection in Diluent

System suitability

Samples: System suitability solution, Standard solution, and Sensitivity solution

[NOTE—The relative retention times in [Table 2](#) are provided as information that could aid in peak assignment.]

Table 2

Name	Relative Retention Time
Imidazole ^a	0.28

Name	Relative Retention Time
Ondansetron related compound F ^b	0.33
Ondansetron related compound A ^c	0.94
Ondansetron	1.00
Ondansetron related compound G	1.04
Ondansetron related compound C ^d	1.1
Ondansetron related compound D	1.2

^a 1*H*-Imidazole.^b 2-Methyl-1*H*-imidazole.^c 3-[(Dimethylamino)methyl]-9-methyl-1,2,3,9-tetrahydro-4*H*-carbazol-4-one hydrochloride.^d 9-Methyl-1,2,3,9-tetrahydro-4*H*-carbazol-4-one.**Suitability requirements****Resolution:** NLT 2.0 between ondansetron and ondansetron related compound G, *System suitability solution***Relative standard deviation:** NMT 5.0% for ondansetron, *Standard solution***Signal-to-noise ratio:** NLT 10 for ondansetron, *Sensitivity solution***Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of ondansetron related compound D in the portion of Injection taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak response of ondansetron related compound D from the *Sample solution* r_s = peak response of ondansetron related compound D from the *Standard solution* C_s = concentration of [USP Ondansetron Related Compound D RS](#) in the *Standard solution* (mg/mL) C_u = nominal concentration of ondansetron in the *Sample solution* (mg/mL)

Calculate the percentage of any other specified or unspecified degradation product in the portion of Injection taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times (M_{r1}/M_{r2}) \times 100$$

 r_u = peak response of any other specified or any unspecified degradation product from the *Sample solution* r_s = peak response of ondansetron from the *Standard solution* C_s = concentration of [USP Ondansetron Hydrochloride RS](#) in the *Standard solution* (mg/mL) C_u = nominal concentration of ondansetron in the *Sample solution* (mg/mL) F = relative response factor (see [Table 3](#)) M_{r1} = molecular weight of ondansetron, 293.37 M_{r2} = molecular weight of anhydrous ondansetron hydrochloride, 329.83**Acceptance criteria:** See [Table 3](#). The reporting threshold is 0.1%.**Table 3**

Name	Relative Response Factor	Acceptance Criteria, NMT (%)
Ondansetron related compound A	1.0	0.2
Ondansetron related compound C	1.5	0.2
Ondansetron related compound D	—	0.12
Any unspecified degradation product	1.0	0.2
Total degradation products	—	0.5

▲ (USP 1-May-2024)

SPECIFIC TESTS

Change to read:

- [BACTERIAL ENDOTOXINS TEST \(85\)](#): ▲ Meets the requirements ▲ (USP 1-May-2024)

Add the following:

- ▲ • [STERILITY TESTS \(71\)](#): Meets the requirements ▲ (USP 1-May-2024)
- [pH \(791\)](#): 3.3–4.0
- [PARTICULATE MATTER IN INJECTIONS \(788\)](#): Meets the requirements for small-volume injections
- **OTHER REQUIREMENTS**: It meets the requirements under [Injections and Implanted Drug Products \(1\)](#).

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE**: Preserve in single-dose or in multiple-dose containers, preferably of Type I glass, at a temperature between 2° and 30°, protected from light.

Change to read:

- [USP REFERENCE STANDARDS \(11\)](#)

[USP Ondansetron Hydrochloride RS](#)

▲ ▲ (USP 1-May-2024)

[USP Ondansetron Related Compound D RS](#)

9-Methyl-3-methylene-1,2,3,9-tetrahydro-4H-carbazol-4-one.

▲ $C_{14}H_{13}NO$ 211.26

[USP Ondansetron Related Compound G](#)

3-[(1*H*-Imidazole-1-yl)methyl]-9-methyl-1,2,3,9-tetrahydro-4*H*-carbazol-4-one.

$C_{17}H_{17}N_3O$ 279.34 ▲ (USP 1-May-2024)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
ONDANSETRON INJECTION	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 48(5)

Current DocID: [GUID-6D80D516-BAFC-4FB1-AA45-F8F62824CA25_7_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M58652_07_01

DOI ref: [e6701](#)