

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Dec-2022
Document Type: USP Monographs
DocId: GUID-5DE67EE4-DDEF-479C-B5B6-FA096D0A0CF4_6_en-US
DOI: https://doi.org/10.31003/USPNF_M2608_06_01
DOI Ref: zux9j

© 2025 USPC
Do not distribute

Omega-3-Acid Ethyl Esters

DEFINITION

Omega-3-Acid Ethyl Esters is a mixture of ethyl esters, principally the ethyl esters of eicosapentaenoic acid (EPAee) (C20:5 n-3, EE) and docosahexaenoic acid (DHAee) (C22:6 n-3, EE). It may also contain ethyl esters of alpha-linolenic acid (C18:3 n-3, EE), moroctic acid (C18:4 n-3, EE), eicosatetraenoic acid (C20:4 n-3, EE), heneicosapentaenoic acid (C21:5 n-3, EE), and docosapentaenoic acid (C22:5 n-3, EE). Tocopherol may be added as an antioxidant.

IDENTIFICATION

- A. The retention times of the principal peaks in *Test solution 4* correspond to those of eicosapentaenoic acid ethyl ester and docosahexaenoic acid ethyl ester in *Standard solution 1b* and *Standard solution 1a*, as obtained in the Assay.
- B. It meets the acceptance criteria in *Table 1* of the Assay.

ASSAY

• CONTENT OF EPAEE, DHAEE, AND TOTAL OMEGA-3-ACID ETHYL ESTERS

(See *Fats and Fixed Oils (401), Procedures, Omega-3 Fatty Acids Determination and Profile*.)

Test solution 3, Test solution 4, Standard solution 1a, Standard solution 1b, System suitability solution 1, Chromatographic system, and System suitability: Proceed as directed in the chapter.

Analysis

Samples: *Test solution 3, Test solution 4, Standard solution 1a, and Standard solution 1b*

Calculate the content of EPAee and DHAee in the portion of Omega-3-Acid Ethyl Esters taken:

$$\text{Result} = (R_u/R_s) \times (W_s/W_u)$$

R_u = peak area ratio of EPAee or DHAee to the internal standard from *Test solution 3*

R_s = peak area ratio of the EPAee to the internal standard from *Standard solution 1b* or DHAee to the internal standard from *Standard solution 1a*

W_s = weight of DHAee taken for preparing *Standard solution 1a* or weight of EPAee taken for preparing *Standard solution 1b* (mg)

W_u = weight of sample taken for preparing *Test solution 3* (g)

Calculate the content of total omega-3-acid ethyl esters in the portion of Omega-3-Acid Ethyl Esters taken:

$$\text{Result} = r_{FAn-3ee}[(EPAee + DHAee)/(r_{EPAee} + r_{DHAee})] + EPAee + DHAee$$

$r_{FAn-3ee}$ = sum of the peak areas of alpha-linolenic acid ethyl ester (C18:3 n-3, EE), moroctic acid ethyl ester (C18:4 n-3, EE), eicosatetraenoic acid ethyl ester (C20:4 n-3, EE), heneicosapentaenoic acid ethyl ester (C21:5 n-3, EE), and docosapentaenoic acid ethyl ester (C22:5 n-3, EE) in *Test solution 4*

EPAee = content of EPAee (mg/g)

DHAee = content of DHAee (mg/g)

r_{EPAee} = peak area of EPAee in *Test solution 4*

r_{DHAee} = peak area of DHAee in *Test solution 4*

Acceptance criteria: It conforms to the acceptance criteria in [Table 1](#). Articles labeled as Omega-3-Acid Ethyl Esters type A meet *Acceptance Criteria II*.

Table 1

		Acceptance Criteria I		Acceptance Criteria II (for articles labeled as Omega-3-Acid Ethyl Esters type A)	
Name	Relative Retention Time	NLT	NMT	NLT	NMT
C18:3 n-3, EE ^a	0.585	—	—	—	—
C18:4 n-3, EE ^b	0.608	—	—	—	—
C20:4 n-3, EE ^c	0.777	—	—	—	—
C20:5 n-3, EE (EPAee) ^d	0.796	430 mg/g	495 mg/g	365 mg/g	435 mg/g
C21:5 n-3, EE ^e	0.889	—	—	—	—
C22:5 n-3, EE ^f	0.977	—	—	—	—
C22:6 n-3, EE (DHAee) ^g	1.000	347 mg/g	403 mg/g	290 mg/g	360 mg/g
EPAee + DHAee	—	800 mg/g	880 mg/g	700 mg/g	749 mg/g
Total omega-3-acid ethyl esters	—	90% (w/w)	—	78% (w/w)	—

^a Alpha-linolenic acid ethyl ester.

^b Moroctic acid ethyl ester.

^c Eicosatetraenoic acid ethyl ester.

^d Eicosapentaenoic acid ethyl ester.

^e Heneicosapentaenoic acid ethyl ester.

^f Docosapentaenoic acid ethyl ester (clupanodonic acid ethyl ester).

^g Docosahexaenoic acid ethyl ester.

IMPURITIES

• **FATS AND FIXED OILS (401), Procedures, Trace Metals:** NMT 0.1 ppm each of lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg)

• **CHOLESTEROL**

Internal standard stock solution: 3 mg/mL of [5 \$\alpha\$ -cholestane](#) in [n-heptane](#). [NOTE—Prepare fresh before use.]

Internal standard solution: 0.3 mg/mL of [5 \$\alpha\$ -cholestane](#) in [n-heptane](#). [NOTE—Prepare fresh before use.]

Standard stock solution: 3.0 mg/mL of [cholesterol](#) in [n-heptane](#). [NOTE—This solution is stable for 6 months stored in a freezer.] Transfer 1.0 mL of this solution to a 10.0-mL volumetric flask. Dilute with [n-heptane](#) to volume. [NOTE—Prepare this solution fresh daily.]

Standard solution: Transfer 1.0 mL each of the *Standard stock solution* and the *Internal standard solution* to a 15-mL centrifuge tube.

Evaporate to dryness at about 50° with a gentle stream of nitrogen. Add 0.5 mL of 50% [potassium hydroxide](#) and 3 mL of [alcohol](#), fill the tube with nitrogen, and cap. Heat the sample at 100° for 60 min, using a heating block. Cool for about 10 min. Add 6 mL of [water](#) to the tube, and shake for 1 min. Extract the solution four times with 2.5-mL portions of [ethyl ether](#), using a vortex mixer or suitable shaker for 1 min for each extraction. Transfer and combine the extracts into a large centrifuge tube, and wash with 5 mL of [water](#), mixing completely with gentle inversion. Remove the water phase, and add 5 mL of 0.5 M [potassium hydroxide](#) to the ether phase, mixing carefully to avoid an emulsion. Remove the potassium hydroxide, and add another 5 mL of [water](#), mixing carefully. Transfer the ether phase to a small centrifuge tube. [Note—If an emulsion has occurred, a small amount of [sodium chloride](#) may be added to obtain a separation of the phases.] Evaporate the ether phase to dryness under a stream of nitrogen with careful heating. Dissolve the sample in 600 μ L of [ethyl acetate](#), and mix well. Transfer 200 μ L of this solution to a sample vial, and dilute with [ethyl acetate](#) to about 2 mL.

Alpha tocopherol stock solution: 1.5–2.0 mg/mL of [USP Alpha Tocopherol RS](#) in [n-heptane](#). [Note—This solution is stable for 12 months stored in a freezer.]

System suitability solution: Mix 1.0 mL of the *Standard stock solution*, 1.0 mL of the *Internal standard stock solution*, and 2.0 mL of the *Alpha tocopherol stock solution* in a 50-mL volumetric flask. Evaporate to dryness with the aid of heat, and dilute with [ethyl acetate](#) to volume. Dilute 1.0 mL of this solution with [ethyl acetate](#) to 10.0 mL. [Note—This solution is stable for 6 months stored in a freezer.]

Sample solution: Transfer 100 mg of Omega-3-Acid Ethyl Esters to a 15-mL centrifuge tube. Add 1.0 mL of the *Internal standard solution*. Prepare as directed in the *Standard solution* beginning with "Evaporate to dryness".

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: GC

Detector: Flame ionization

Column: 0.25-mm \times 30-m capillary; coated with a 0.25- μ m film of [G27](#) phase

Temperatures

Injection port: 320°

Detector: 300°

Column: See [Table 2](#).

Table 2

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
170	0	170	1
170	4	320	1.5

Carrier gas: Helium

Flow rate: 1.3 mL/min

Injection volume: 1 μ L

Injection type: Splitless injection system

System suitability

Sample: System suitability solution

Suitability requirements

Resolution: NLT 1.2 between alpha tocopherol and cholesterol

Analysis

Samples: Standard solution and Sample solution

Calculate the content of total cholesterol in the portion of Omega-3-Acid Ethyl Esters taken:

$$\text{Result} = (R_U/R_S) \times (W_S/W_U)$$

R_U = peak area ratio of the cholesterol peak to the internal standard from the *Sample solution*

R_S = peak area ratio of the cholesterol peak to the internal standard from the *Standard solution*

W_S = weight of cholesterol in the *Standard solution* (mg)

W_U = weight of Omega-3-Acid Ethyl Esters in the *Sample solution* (g)**Acceptance criteria:** NMT 3.0 mg/g**• OLIGOMERS****Mobile phase:** [Tetrahydrofuran](#)**System suitability solution:** Monodocosahexaenoin, didocosahexaenoin, and tridocosahexaenoin¹ in *Mobile phase*, with concentrations of about 0.5, 0.3, and 0.2 mg/mL, respectively.**Sample solution 1:** 5.0 mg/mL of Omega-3-Acid Ethyl Esters in [tetrahydrofuran](#)**Sample solution 2:** [NOTE—Use *Sample solution 2* where the results of this test using *Sample solution 1* exceed the *Acceptance criteria* due to the presence of monoglycerides.] Weigh 50 mg of Omega-3-Acid Ethyl Esters into a quartz tube, add 1.5 mL of a 20-g/L solution of [sodium hydroxide](#) in [methanol](#), cover with nitrogen, cap tightly with a polytef-lined cap, mix, and heat on a water bath for 7 min. Allow to cool. Add 2.0 mL of [boron trichloride–methanol solution](#), cover with nitrogen, cap tightly, mix, and heat on a water bath for 30 min. Cool to 40°–50°, add 1 mL of [isooctane](#), cap, and shake vigorously for NLT 30 s. Immediately add 5 mL of saturated [sodium chloride](#) solution, cover with nitrogen, cap, and shake thoroughly for NLT 15 s. Transfer the upper layer to a separate tube. Shake the methanol layer with 1 mL of [isooctane](#). Wash the combined isooctane extracts with two quantities, each of 1 mL of [water](#). Carefully evaporate the solvent under a stream of nitrogen, and then add 10.0 mL of [tetrahydrofuran](#) to the residue. Add a small amount of [anhydrous sodium sulfate](#), and filter.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** Differential refractometer**Columns:** Three in concatenated series, 7.8-mm × 30-cm; 7-μm packing [L21](#), with pore sizes in the range of 5–50 nm, arranged with decreasing pore size from the injection port to the detector to fulfill the system suitability requirements**Flow rate:** 0.8 mL/min**Injection volume:** 40 μL**System suitability****Sample:** *System suitability solution*

[NOTE—The elution order is tridocosahexaenoin, didocosahexaenoin, and monodocosahexaenoin.]

Suitability requirements**Resolution:** NLT 2.0 between monodocosahexaenoin and didocosahexaenoin; NLT 1.0 between didocosahexaenoin and tridocosahexaenoin**Analysis****Samples:** *Sample solution 1* and *Sample solution 2*

Measure the areas of the major peaks.

Calculate the percentage of oligomers in the portion of Omega-3-Acid Ethyl Esters taken to prepare *Sample solution 1*:

$$\text{Result} = (r_I/r_T) \times 100$$

 r_I = sum of the peak areas with a retention time less than that of the ethyl esters peaks r_T = sum of all the peak areasCalculate the percentage of oligomers in the portion of Omega-3-Acid Ethyl Esters taken to prepare *Sample solution 2*:

$$\text{Result} = (r_I/r_T) \times 100$$

 r_I = sum of all the peak areas with a retention time less than that of the methyl esters peaks r_T = sum of all the peak areas**Acceptance criteria:** NMT 1.0% of oligomers**Change to read:**

- **LIMIT OF DIOXINS, FURANS, AND POLYCHLORINATED BIPHENYLS (PCBs):** Determine the content of polychlorinated dibenzo-para-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) ▲ using the current revision of ▲ (USP 1-Dec-2022) method No. 1613 ▲ ▲ (USP 1-Dec-2022) of the Environmental Protection Agency. Determine the content of polychlorinated biphenyls (PCBs) ▲ using the current revision of ▲ (USP 1-Dec-2022) method No. 1668 ▲ ▲ (USP 1-Dec-2022) of the Environmental Protection Agency.

Acceptance criteria: The sum of PCDDs and PCDFs is NMT 1 pg/g of WHO toxic equivalents. The sum of PCBs (IUPAC congeners PCB-28, PCB-52, PCB-101, PCB-118, PCB-138, PCB-153, and PCB-180) is NMT 0.5 ppm.

• **LIMIT OF TOTAL UNIDENTIFIED FATTY ACID ETHYL ESTERS**

[NOTE—This test is not required for articles labeled as Omega-3-Acid Ethyl Esters type A.]

From the chromatogram obtained with *Test solution 4* in the Assay for Content of EPAee, DHAee, and Total Omega-3-Acid Ethyl Esters, determine the peak area of the largest single unidentified peak with a relative retention time different from those in *Table 3*.

Table 3

Identified Ethyl Ester	Relative Retention Time
Phytanic acid	0.416
C16:3 n-4	0.431
C16:4 n-1	0.468
C18:3 n-6	0.557
C18:3 n-4	0.574
C18:3 n-3	0.585
C18:4 n-3	0.608
C18:4 n-1	0.618
Furan acid 5	0.691
C19:5	0.710
C20:3 n-6	0.720
C20:4 n-6	0.736
Furan acid 7	0.744
C20:4 n-3	0.777
Furan acid 8	0.783
EPA	0.796
Furan acid 9	0.867
C21:5 n-3	0.889
C22:4	0.917
Furan acid 10	0.922
C22:5 n-6	0.939
Furan acid 11	0.963
C22:5 n-3	0.977
DHA	1.000

Calculate the content of unidentified fatty acid ethyl esters in area percentage:

$$\text{Result} = 100 - (100 \times \sum A_{\text{IEE}}/r_T)$$

A_{IEE} = peak area of each identified ethyl ester in [Table 3](#)

r_T = sum of all the peak areas except solvents and butylated hydroxytoluene

Acceptance criteria: The area of the largest single unidentified peak is NMT 0.5% of the total area. The total area of unidentified peaks as calculated above is NMT 2%.

• **LIMIT OF NON-OMEGA-3-ACID ETHYL ESTERS**

[NOTE—This test is only required for articles labeled as Omega-3-Acid Ethyl Esters type A.]

From the chromatogram obtained with *Test solution 4* in the Assay for Content of EPAee, DHAee, and Total Omega-3-Acid Ethyl Esters, calculate the amounts of C18:1 n-9 ethyl ester and C20:4 n-6 ethyl ester in the portion of Omega-3-Acid Ethyl Esters taken:

$$\text{Result} = (A_{\text{IEE}}/r_T) \times 100$$

A_{IEE} = peak area of C18:1 n-9 ethyl ester or C20:4 n-6 ethyl ester

r_T = sum of all the peak areas except solvents and BHT

Acceptance criteria

C18:1 n-9 ethyl ester: NMT 6.0%

C20:4 n-6 ethyl ester: NMT 4.0%

SPECIFIC TESTS

- [FATS AND FIXED OILS \(401\), Procedures, Acid Value](#): NMT 2.0
- [FATS AND FIXED OILS \(401\), Procedures, Anisidine Value](#): NMT 15
- [FATS AND FIXED OILS \(401\), Procedures, Peroxide Value](#): NMT 10.0

• **ABSORBANCE**

Sample solution: Transfer 300 mg, accurately weighed, to a 50-mL volumetric flask. Dissolve in and dilute immediately with [isoctane](#) to volume. Pipet 2.0 mL into a 50-mL volumetric flask, and dilute with [isoctane](#) to volume.

Acceptance criteria: NMT 0.55, determined at 233 nm, with isoctane being used as the blank

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers under a nitrogen atmosphere. Store at controlled room temperature.
- **LABELING:** The label states the content of DHA ethyl ester and EPA ethyl ester in mg/g, the sum of the EPA and DHA ethyl esters contents in mg/g, and the content of the total omega-3-acid ethyl esters in weight percentage (w/w). It also states the name of any added antioxidant. Articles which meet *Acceptance Criteria II* of the Assay and the *Limit of Non-Omega-3-Acid Ethyl Esters* are labeled as Omega-3-Acid Ethyl Esters type A.
- [USP REFERENCE STANDARDS \(11\)](#)
[USP Alpha Tocopherol RS](#)

¹ Suitable grades of monodocosahexaenoin, didocosahexaenoin, and tridocosahexaenoin may be obtained from Nu-Chek Prep.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
OMEGA-3-ACIDS ETHYL ESTERS	Fatkhulla K Tadjimukhamedov Associate Scientific Liaison	NBDS2020 Non-botanical Dietary Supplements
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	NBDS2020 Non-botanical Dietary Supplements

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 47(3)

Current DocID: **GUID-5DE67EE4-DDEF-479C-B5B6-FA096D0A0CF4_6_en-US**

DOI: https://doi.org/10.31003/USPNF_M2608_06_01

DOI ref: [zux9j](#)

OFFICIAL