

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-May-2018
 Document Type: NF Monographs
 DocId: GUID-E20BE1A6-75C1-4F5A-A845-AF85332C9D3B_3_en-US
 DOI: https://doi.org/10.31003/USPNF_M58620_03_01
 DOI Ref: v2n37

© 2025 USPC
 Do not distribute

Olive Oil

CAS RN®: 8001-25-0.

DEFINITION

Olive Oil is the refined fixed oil obtained from the ripe fruit of *Olea europaea* L. (Fam. Oleaceae). It may contain suitable antioxidants.

IDENTIFICATION

- **A. IDENTITY BY FATTY ACID COMPOSITION**

Analysis: Proceed as directed in the test for [Fats and Fixed Oils \(401\), Fatty Acid Composition](#).

Acceptance criteria: Meets the composition profile of fatty acids in [Table 1](#)

- **B. IDENTITY BY TRIGLYCERIDE PROFILE**

Analysis: Proceed as directed in the test for [Identification of Fixed Oils by Thin-Layer Chromatography \(202\)](#).

Acceptance criteria: Meets the requirements in the chapter

IMPURITIES

- **ALKALINE IMPURITIES**

Sample: 10 mL of Olive Oil

Analysis: Mix 10 mL of freshly opened acetone and 0.3 mL of water, and add 0.05 mL of bromophenol blue TS. Add the **Sample**, shake, and allow to stand. Titrate with 0.01 N hydrochloric acid VS to change the color of the upper layer to yellow.

Acceptance criteria: NMT 0.1 mL of 0.01 N hydrochloric acid is required.

SPECIFIC TESTS

- [FATS AND FIXED OILS, Acid Value \(Free Fatty Acids\) \(401\)](#): NMT 0.3. [NOTE—Petroleum ether with a 100°–120° boiling range can be used to replace ether in the test.]

- [FATS AND FIXED OILS, Peroxide Value \(401\)](#): NMT 10.0

- [FATS AND FIXED OILS, Fatty Acid Composition \(401\)](#): Olive Oil exhibits the composition profile of fatty acids shown in [Table 1](#), as determined in the chapter.

Table 1

Carbon-Chain Length	Number of Double Bonds	Percentage (%)
<16	0	≤0.1
16	0	7.5–20.0
16	1	≤3.5
18	0	0.5–5.0
18	1	56.0–85.0
18	2	3.5–20.0
18	3	≤1.2

Carbon-Chain Length	Number of Double Bonds	Percentage (%)
20	0	≤0.7
20	1	≤0.4
22	0	≤0.2
24	0	≤0.2

• **ABSENCE OF SESAME OIL**

Sample: 10 mL of Olive Oil

Analysis: Mix the *Sample* with a mixture of 0.5 mL of a 0.35% (v/v) solution of fufural in acetic anhydride and 4.5 mL of acetic anhydride, and shake the mixture for about 1 min. Pass through a filter paper previously wetted with acetic anhydride. Add 0.2 mL of sulfuric acid to the filtrate.

Acceptance criteria: No bluish-green color develops.

• **FATS AND FIXED OILS, Unsaponifiable Matter (401):** NMT 1.5%. [NOTE—Petroleum ether with a 40°–60° boiling range can be used to replace ether in the test.]

• **ULTRAVIOLET ABSORBANCE**

Sample solution: Dissolve 1.0 g of Olive Oil in cyclohexane, and dilute with cyclohexane to 100 mL.

Instrumental conditions

(See *Ultraviolet-Visible Spectroscopy (857)*.)

Mode: UV-Vis

Wavelength: 270 nm

Path length of the cell: 1 cm

Analysis: Determine the UV-Vis absorbance using the *Instrumental conditions* described above.

Acceptance criteria: The absorbance is NMT 1.20.

• **WATER DETERMINATION, Method Ic (921):** NMT 0.1%

• **STEROL COMPOSITION**

2 M Alcoholic potassium hydroxide solution: Dissolve 12 g of potassium hydroxide in 10 mL of water, and dilute with alcohol (ethanol) to 100 mL.

Sample A: Accurately weigh 5 g of Olive Oil into a 150-mL flask fitted with a reflux condenser. Add 50 mL of 2 M Alcoholic potassium hydroxide solution, and heat on a water bath for 1 h, shaking frequently. Add 50 mL of water through the top of the condenser, shake, and allow to cool. Transfer the contents of the flask to a separating funnel. Rinse the flask with several portions totaling 50 mL of petroleum ether with a 40°–60° boiling range, and add the rinsings to the separating funnel. Shake vigorously for 1 min. Allow to separate, and transfer the aqueous layer to a second separating funnel. If an emulsion forms, add small quantities of alcohol or a concentrated solution of potassium hydroxide. Shake the aqueous layer with two 50-mL quantities of petroleum ether with a 40°–60° boiling range. Combine the petroleum ether layers in a third separating funnel and wash with three 50-mL quantities of 50% alcohol. Transfer the petroleum ether layer to a tared 250-mL flask. Rinse the separating funnel with small quantities of petroleum ether with a 40°–60° boiling range, and add to the flask. Evaporate the petroleum ether on a water bath and dry the residue at 100°–105° for 15 min, keeping the flask horizontal. Allow to cool in a desiccator and weigh.

Reference A: Accurately weigh 5 g of sunflower oil into a 150-mL flask fitted with a reflux condenser. Proceed as directed for *Sample A*, beginning with "Add 50 mL of 2 M Alcoholic potassium hydroxide solution".

Separation of the sterol fraction by LC

Mobile phase: Isopropyl alcohol and *n*-hexane (1:99)

Sample solution A: Transfer *Sample A* with three 4-mL quantities of petroleum ether with a 40°–60° boiling range to a 15-mL test tube.

[NOTE—Ether can be used to replace petroleum ether if *Sample A* is not well soluble in petroleum ether.] Evaporate to dryness under a stream of nitrogen. Dissolve *Sample A* in *Mobile phase* to obtain a solution with an approximate concentration of 40 mg/mL. Add a few drops of isopropyl alcohol to improve the solubility. [NOTE—3 drops are normally sufficient to ensure complete solubilization.] Pass through a membrane filter (nominal 0.45-μm pore size).

Reference solution A: Prepare as directed for *Sample solution A*, except use *Reference A* instead of *Sample A*.

Chromatographic system

(See *Chromatography (621)*.)

Mode: LC

Detector: UV 210 nm**Columns****Guard:** 4.6-mm × 0.5-cm (or 4.6-mm × 1.0-cm); 5-μm packing L3, with a 6-nm pore size**Analytical:** 4.6-mm × 25-cm; 5-μm packing L3, with a 6-nm pore size**Flow rate:** 1.0 mL/min**Injection volume:** 50 μL**Identification of the peaks due to sterols****Samples:** *Sample solution A* and *Reference solution A*

Sterol identification: The sterol fraction elutes at the end of the chromatogram. Locate the fraction to be collected by using the chromatogram from *Reference solution A*. The chromatogram from *Reference solution A* shows two or three principal peaks, which elute at approximately 21–35 min depending on the column used. The chromatogram from *Sample solution A* may have one principal peak.

Sterol collection: Collect the fraction at the detector outlet in a 15-mL tube with a screw cap. Evaporate the solvent under a stream of nitrogen. [NOTE—If necessary, to increase the sample amount for later analysis, make the second injection of 50 μL on the HPLC column and collect the fraction at the detector outlet in the same 15-mL test tube with a screw cap. Evaporate the solvent under a stream of nitrogen.]

Determination of sterols by GC

Sample solution B: Dissolve the residue of the sterol fraction obtained from *Sample solution A* in the previous LC step in 0.2 mL of anhydrous pyridine and 0.2 mL of a mixture of 1 volume of chlorotrimethylsilane and 99 volumes of bis(trimethylsilyl)trifluoroacetamide. Insert the stopper into the test tube tightly, and heat at 80° for 20 min. Allow to cool and use the liquid phase.

Reference solution B: Dissolve 9 parts of the residue of the sterol fraction obtained from *Reference solution A* in the previous LC step and 1 part of cholesterol in 0.2 mL of anhydrous pyridine and 0.2 mL of a mixture of 1 volume of chlorotrimethylsilane and 99 volumes of bis(trimethylsilyl)trifluoroacetamide. Insert the stopper into the test tube tightly and heat at 80° for 20 min. Allow to cool and use the liquid phase.

Chromatographic system(See [Chromatography \(621\), System Suitability](#).)**Mode:** GC**Detector:** Flame ionization**Column:** 0.25-mm × 30-m fused-silica capillary; 0.25-μm layer of phase G27**Temperatures****Injection port:** 290°**Detector:** 290°**Column:** See [Table 2](#).**Table 2**

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
260	—	260	38
260	5	290	5

Carrier gas: Helium**Flow rate:** 2.6 mL/min**Injection volume:** 1–3 μL (depending on the expected amount of sterols in the test sample)**Injection type:** Split injection; split ratio is 25:1**System suitability****Sample:** *Reference solution B*

The chromatogram from *Reference solution B* shows five principal peaks corresponding to cholesterol, campesterol, stigmasterol, β-sitosterol, and Δ7-stigmasterol.

[NOTE—The retention times of the sterols with reference to β-sitosterol are given in [Table 3](#).]**Table 3**

Identification	Relative Retention Time
Cholesterol	0.65
Brassicasterol	0.71
24-Methylene-cholesterol	0.80
Campesterol	0.82
Campestanol	0.83
Stigmasterol	0.87
$\Delta 7$ -Campesterol	0.92
$\Delta 5,23$ -Stigmastadienol	0.95
Clerosterol	0.96
β -Sitosterol	1.00
Sitostanol	1.01
$\Delta 5$ -Avenasterol	1.03
$\Delta 5,24$ -Stigmastadienol	1.09
$\Delta 7$ -Stigmastenol	1.13
$\Delta 7$ -Avenasterol	1.17

Suitability requirements

Resolution: NLT 3.0 between the campesterol and stigmasterol peaks

Analysis

Samples: Sample solution B and Reference solution B

Use the chromatogram from Reference solution B to identify the peaks due to cholesterol, campesterol, stigmasterol, β -sitosterol, and $\Delta 7$ -stigmastenol. Identify the peaks due to the sterols in the chromatogram from Sample solution B using the chromatograms from Reference solution B and the relative retention times with reference to β -sitosterol (main peak) given in [Table 3](#).

Calculate the percentage content of each sterol in the sterol fraction of Olive Oil taken:

$$\text{Result} = (r_u/r_T) \times 100$$

r_u = area of the peak due to the sterol component to be determined

r_T = sum of the areas of the peaks due to the components indicated in [Table 3](#)

Acceptance criteria: Olive Oil exhibits the composition profiles of sterols shown in [Table 4](#).

Table 4

Component	Percentage (%)
Cholesterol	≤ 0.5

Component	Percentage (%)
Campesterol	≤4.0
Δ7-Stigmastenol	≤0.5
Sum of the contents of Δ5,23-stigmastadienol, clerosterol, β-sitosterol, sitostanol, Δ5-avenasterol, and Δ5,24-stigmastadienol	≥93.0

The content of stigmasterol is NMT that of campesterol.

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE:** Preserve in tight, light-resistant, well-filled containers, and prevent exposure to excessive heat.
- LABELING:** Label it to indicate the name and quantity of any suitable antioxidants.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
OLIVE OIL	Documentary Standards Support	CE2020 Complex Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	CE2020 Complex Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 40(4)

Current DocID: [GUID-E20BE1A6-75C1-4F5A-A845-AF85332C9D3B_3_en-US](#)

Previous DocID: [GUID-E20BE1A6-75C1-4F5A-A845-AF85332C9D3B_1_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M58620_03_01

DOI ref: [v2n37](#)