

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Aug-2019
Document Type: USP Monographs
DocId: GUID-E4C7FAFA-C6DA-41E1-AA0C-9BF4C0EC80CB_2_en-US
DOI: https://doi.org/10.31003/USPNF_M1065_02_01
DOI Ref: 6tco7

© 2025 USPC
Do not distribute

Olanzapine and Fluoxetine Capsules

DEFINITION

Olanzapine and Fluoxetine Capsules contain an amount of Olanzapine and Fluoxetine Hydrochloride equivalent to NLT 90.0% and NMT 110.0% each of the labeled amount of olanzapine ($C_{17}H_{20}N_4S$) and fluoxetine ($C_{17}H_{18}F_3NO$).

IDENTIFICATION

- A. The retention times of the major peaks of the *Sample solution* correspond to those of the *Standard solution*, as obtained in the *Assay*.

Add the following:

- ▲ B. The UV spectra of the major peaks of the *Sample solution* correspond to those of the *Standard solution*, as obtained in the *Assay*.▲ (USP 1-Aug-2019)

ASSAY

Change to read:

- **PROCEDURE**

Buffer: 37 mg/L of [disodium ethylenediaminetetraacetate](#) in [water](#). Add 3.3 mL of [phosphoric acid](#), and adjust with 50% [sodium hydroxide](#) to a pH of 2.5. Dissolve 8.7 g of [sodium dodecyl sulfate](#) in the resulting solution.

Mobile phase: [Acetonitrile](#) and **Buffer** (1:1)

Standard solution: 0.12 mg/mL of [USP Olanzapine RS](#) and 0.45 mg/mL of [USP Fluoxetine Hydrochloride RS](#) in **Mobile phase**

Sample solution: Nominally 0.06–0.18 mg/mL of olanzapine and 0.25–0.5 mg/mL of fluoxetine in **Mobile phase** from a counted number of Capsules prepared as follows. Place the Capsules (including shells) into a suitable volumetric flask and fill to about half volume with **Mobile phase**. Mix for NLT 30 min. If disintegration is incomplete, sonicate for NMT 5 min. Dilute with **Mobile phase** to volume, mix, and filter or centrifuge.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 227 nm. ▲For *Identification B*, use a diode array detector in the range of 210–400 nm.▲ (USP 1-Aug-2019)

Column: 4.6-mm × 7.5-cm; 3.5-μm packing [L7](#)

Column temperature: 40°

Flow rate: 2 mL/min

Injection volume: 10 μL

Run time: 2.5 times the retention time of olanzapine

System suitability

Sample: *Standard solution*

[**NOTE**—The relative retention times for olanzapine and fluoxetine are 1.0 and 1.5, respectively.]

Suitability requirements

Resolution: NLT 2.0 between olanzapine and fluoxetine

Relative standard deviation: NMT 2.0% for the olanzapine and fluoxetine peaks

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of olanzapine ($C_{17}H_{20}N_4S$) in the portion of Capsules taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of olanzapine from the *Sample solution*

r_s = peak response of olanzapine from the *Standard solution*

C_s = concentration of [USP Olanzapine RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of olanzapine in the *Sample solution* (mg/mL)

Calculate the percentage of the labeled amount of fluoxetine ($C_{17}H_{18}F_3NO$) in the portion of Capsules taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response of fluoxetine from the *Sample solution*

r_s = peak response of fluoxetine from the *Standard solution*

C_s = concentration of [USP Fluoxetine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of fluoxetine in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of fluoxetine, 309.33

M_{r2} = molecular weight of fluoxetine hydrochloride, 345.79

Acceptance criteria: 90.0%–110.0% ▲each of olanzapine and fluoxetine▲ (USP 1-Aug-2019)

PERFORMANCE TESTS

- [Dissolution \(711\)](#)

Medium: 0.1 N [hydrochloric acid](#); 900 mL, deaerated. [NOTE—Helium sparging recommended.]

Apparatus 2: 50 rpm, with 3-prong sinkers

Time: 30 min for both olanzapine and fluoxetine

Standard solution: [USP Olanzapine RS](#) and [USP Fluoxetine Hydrochloride RS](#) in *Medium* to obtain a final concentration of ($L/1000$) mg/mL each, where L is label claim, in mg/Capsule.

Sample solution: Pass a portion of the solution through a suitable filter of 0.45- μ m pore size.

Buffer, Mobile phase, Chromatographic system, System suitability, and Analysis: Proceed as directed in the Assay.

Calculate the percentage of the labeled amount of olanzapine ($C_{17}H_{20}N_4S$) dissolved:

$$\text{Result} = (r_u/r_s) \times (C_s/L) \times V \times 100$$

r_u = peak response of olanzapine from the *Sample solution*

r_s = peak response of olanzapine from the *Standard solution*

C_s = concentration of [USP Olanzapine RS](#) in the *Standard solution* (mg/mL)

L = label claim for olanzapine (mg/Capsule)

V = volume of *Medium*, 900 mL

Calculate the percentage of the labeled amount of fluoxetine ($C_{17}H_{18}F_3NO$) dissolved:

$$\text{Result} = (r_u/r_s) \times (C_s/L) \times (M_{r1}/M_{r2}) \times V \times 100$$

r_u = peak response of fluoxetine from the *Sample solution*

r_s = peak response of fluoxetine from the *Standard solution*

C_s = concentration of [USP Fluoxetine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

L = label claim for fluoxetine (mg/Capsule)

M_{r1} = molecular weight of fluoxetine, 309.33

M_{r2} = molecular weight of fluoxetine hydrochloride, 345.79

V = volume of *Medium*, 900 mL

Tolerances: NLT 80% (Q) of the labeled amounts of olanzapine ($C_{17}H_{20}N_4S$) and fluoxetine ($C_{17}H_{18}F_3NO$) are dissolved.

- **UNIFORMITY OF DOSAGE UNITS (905):** Meet the requirements

IMPURITIES

Change to read:

- **ORGANIC IMPURITIES**

Buffer and Mobile phase: Prepare as directed in the Assay.

System suitability solution: 0.1 mg/mL of [USP Olanzapine RS](#), 0.11 mg/mL of [USP Fluoxetine Hydrochloride RS](#), and 0.002 mg/mL each of α [(2-methylamino)ethyl] benzyl alcohol, trifluoro-p-cresol, [USP Fluoxetine Related Compound B RS](#), and [USP Olanzapine Related Compound B RS](#) in *Mobile phase*

▲Sensitivity solution: 3 μ g/mL of [USP Olanzapine RS](#), 3 μ g/mL of [USP Fluoxetine Hydrochloride RS](#), and 0.06 μ g/mL each of α [(2-methylamino)ethyl] benzyl alcohol, trifluoro-p-cresol, [USP Fluoxetine Related Compound B RS](#), and [USP Olanzapine Related Compound B RS](#) in *Mobile phase*▲ (USP 1-Aug-2019)

Standard solution: 2 μ g/mL of [USP Olanzapine RS](#) and 8 μ g/mL of [USP Fluoxetine Hydrochloride RS](#) in *Mobile phase*

Sample solution: Empty the Capsules, and combine the contents in a suitable container. The contents of the Capsules may be powdered in a mortar, if necessary. Transfer an amount of the sample to a suitable volumetric flask to obtain nominally 0.2 mg/mL of olanzapine and 0.27–1.7 mg/mL of fluoxetine, and fill to about 70% volume with *Mobile phase*. Mix for about 5 min. Dilute with *Mobile phase* to volume, mix, and filter or centrifuge.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 215 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing [L7](#)

Temperatures

Autosampler: 5°

Column: 35°

Flow rate: 1.5 mL/min

Injection volume: 50 μ L

Run time: 1.5 times the retention time of fluoxetine

System suitability

Samples: System suitability solution, ▲Sensitivity solution,▲ (USP 1-Aug-2019) and Standard solution

Suitability requirements

[NOTE—Identify the peaks using [Table 1](#).]

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
α [(2-Methylamino)ethyl] benzyl alcohol ^a	0.22	—	0.25
Olanzapine related compound B ^b	0.24	1.73	0.20
Trifluoro-p-cresol ^a	0.30	—	0.25
Fluoxetine related compound B ^a	0.31	—	0.25
Olanzapine	0.63	—	—

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Fluoxetine	1.0	—	—
Any individual fluoxetine related degradation product	—	—	0.25
Any individual olanzapine related degradation product ^c	—	1.0	0.20
Total impurities (fluoxetine related) ^d	—	—	0.40
Total impurities (olanzapine related) ^e	—	—	1.5

^a Fluoxetine related degradation product.

^b Olanzapine related degradation product.

^c Any other degradation product with a relative retention time <0.63 except fluoxetine related degradation products, and any degradation product with a relative retention time >1.0.

^d Sum of all specified fluoxetine related degradation products and any other fluoxetine related degradation product with relative retention times Δ between Δ (USP 1-Aug-2019) 0.63 and 1.0.

^e Sum of all specified olanzapine degradation products, any other degradation product with a relative retention time <0.63 except fluoxetine related degradation products, and any degradation product with relative retention time >1.0.

Resolution: NLT 1.9 between α [(2-methylamino)ethyl] benzyl alcohol and olanzapine related compound B, *System suitability solution*

Tailing factor: NMT 1.8 for olanzapine and fluoxetine, *System suitability solution* and *Standard solution*

Δ Relative standard deviation: NMT 2.0% for the olanzapine and fluoxetine peaks, *Standard solution*

Signal-to-noise ratio: NLT 3 for the α [(2-methylamino)ethyl] benzyl alcohol peak, *Sensitivity solution* Δ (USP 1-Aug-2019)

Analysis

Samples: *Standard solution* and *Sample solution*

[**NOTE**—Peaks eluting before a relative retention time of 0.63 and after a relative retention time of 1.0, excluding any peak with relative retention times of 0.22, 0.30, and 0.31, are olanzapine related degradation products.]

Calculate the percentage of each olanzapine related degradation product in the portion of Capsules taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak response of each individual impurity from the *Sample solution*

r_S = peak response of olanzapine from the *Standard solution*

C_S = concentration of [USP Olanzapine RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of olanzapine in the *Sample solution* (mg/mL)

F = relative response factor (see [Table 1](#))

[**NOTE**—Peaks eluting at relative retention times of 0.22, 0.30, and 0.31, and any peaks between a relative retention time of 0.63 and 1.0, are fluoxetine related degradation products.]

Calculate the percentage of each fluoxetine related degradation product in the portion of Capsules taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak response of each individual impurity from the *Sample solution*

r_S = peak response of fluoxetine from the *Standard solution*

C_s = concentration of [USP Fluoxetine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of fluoxetine in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of fluoxetine, 309.33

M_{r2} = molecular weight of fluoxetine hydrochloride, 345.79

Acceptance criteria: See [Table 1](#).

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers. Store at controlled room temperature.

Change to read:

- [USP REFERENCE STANDARDS \(11\)](#).

[USP Fluoxetine Hydrochloride RS](#) Δ (USP 1-Aug-2019)

[USP Fluoxetine Related Compound B RS](#)

N-Methyl-3-phenylpropylamine.

$C_{10}H_{15}N$ Δ 149.24 Δ (USP 1-Aug-2019)

[USP Olanzapine RS](#) Δ (USP 1-Aug-2019)

[USP Olanzapine Related Compound B RS](#)

2-Methyl-10*H*-thieno-[2,3-*b*][1,5]benzodiazepin-4[5*H*]-one.

$C_{12}H_{10}N_2OS$ 230.29

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
OLANZAPINE AND FLUOXETINE CAPSULES	Documentary Standards Support	SM42020 Small Molecules 4
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 42(5)

Current DocID: [GUID-E4C7FAFA-C6DA-41E1-AA0C-9BF4C0EC80CB_2_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M1065_02_01

DOI ref: [6tco7](#)