

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-May-2018
 Document Type: NF Monographs
 DocId: GUID-104CF8F2-8147-4EA6-A4FF-636F3750CB61_3_en-US
 DOI: https://doi.org/10.31003/USPNF_M58320_03_01
 DOI Ref: 2j5l0

© 2025 USPC
 Do not distribute

Octyldodecanol

$C_{20}H_{42}O$ 298.55

1-Dodecanol, 2-octyl-;
 2-Octyldodecan-1-ol;
 2-Octyldodecanol;
 2-Octyldodecyl alcohol CAS RN®: 5333-42-6.

DEFINITION

Octyldodecanol contains NLT 90.0% and NMT 102.0% of 2-octyldodecan-1-ol ($C_{20}H_{42}O$), the remainder consisting chiefly of related alcohols. It is obtained from sources of vegetable, animal, or synthetic origin.

IDENTIFICATION

- **A. CHROMATOGRAPHIC IDENTITY**

Analysis: Proceed as directed in the Assay.

Acceptance criteria: The retention time of the major peak of the *Sample solution*, excluding the solvent and internal standard peaks, corresponds to the octyldodecanol peak of the *Standard solution*.

- **B. FATS AND FIXED OILS (401), Procedures, Hydroxyl Value:** 175–190

ASSAY

- **PROCEDURE**

Internal standard solution: 1 mg/mL of 1-pentadecanol (internal standard) in ethanol

System suitability solution: Prepare 1 mg/mL each of [USP Cetyl Alcohol RS](#), [USP Stearyl Alcohol RS](#), and [USP Oleyl Alcohol RS](#) in *Internal standard solution*, and heat the solution in a sealed container in a 50° water bath until all fatty alcohols are dissolved. Allow the solution to cool to room temperature, and mix well.

Standard solution: Prepare 1.0 mg/mL of [USP Octyldodecanol RS](#) in *Internal standard solution*.

Sample solution: Prepare 1.0 mg/mL of Octyldodecanol in *Internal standard solution*.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: GC

Detector: Flame ionization

Column: 0.25-mm × 30-m fused-silica capillary, coated with a 0.25-μm layer of phase G7

Temperatures

Injection port: 270°

Detector: 280°

Column: See [Table 1](#).

Table 1

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
60	20	180	—
180	10	220	5

Carrier gas: Hydrogen

Flow rate: 2.0 mL/min, constant flow mode

Injection volume: 1 µL

Injection type: Split ratio, 100:1

Liner: Single taper, low-pressure drop liner with deactivated wool

Run time: 15 min

System suitability

Samples: System suitability solution and Standard solution

[NOTE—See [Table 2](#) for the relative retention times.]

Table 2

Component	Relative Retention Time
1-Pentadecanol (internal standard)	1.00
Cetyl alcohol	1.08
Stearyl alcohol	1.25
Oleyl alcohol	1.27
Octyldodecanol	1.32

Suitability requirements

Resolution: NLT 10 between the cetyl alcohol and stearyl alcohol peaks; NLT 2.0 between the stearyl alcohol and oleyl alcohol peaks, *System suitability solution*

Tailing factor: 0.8–1.8 for the octyldodecanol and 1-pentadecanol peaks, *Standard solution*

Relative standard deviation: NMT 1%, using the area ratio of octyldodecanol to 1-pentadecanol, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of octyldodecanol ($C_{20}H_{42}O$) in the portion of Octyldodecanol taken:

$$\text{Result} = (R_U/R_S) \times (C_S/C_U) \times 100$$

R_U = peak response ratio of octyldodecanol to the internal standard (peak response of octyldodecanol/peak response of the internal standard) from the *Sample solution*

R_S = peak response ratio of octyldodecanol to the internal standard (peak response of octyldodecanol/peak response of the internal standard) from the *Standard solution*

C_S = concentration of [USP Octyldodecanol RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Octyldodecanol in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–102.0%

IMPURITIES

[NOTE—On the basis of the manufacturing route, perform either *Organic Impurity Test 1* or *Organic Impurity Test 2*.]

- **RESIDUE ON IGNITION (281):** NMT 0.1%, determined on 2 g

• **ORGANIC IMPURITY TEST 1: LIMIT OF RELATED FATTY ALCOHOLS AND ALKANES**

System suitability solution: Prepare 1 mg/mL each of [USP Stearyl Alcohol RS](#), [USP Oleyl Alcohol RS](#), [USP Linoleyl Alcohol RS](#), and [USP Octyldodecanol RS](#) in ethanol, and heat the solution in a sealed container in a 50° water bath until all fatty alcohols are dissolved. Allow the solution to cool to room temperature, and mix well. Dilute the solution with ethanol to obtain a solution containing 0.05 mg/mL each of [USP Stearyl Alcohol RS](#), [USP Oleyl Alcohol RS](#), [USP Linoleyl Alcohol RS](#), and [USP Octyldodecanol RS](#).

Sample solution: 1 mg/mL of Octyldodecanol in ethanol

Chromatographic system: Proceed as directed in the Assay, except use split injection with a split ratio of 5:1.

System suitability

Samples: *System suitability solution* and *Sample solution*

[NOTE—See [Table 3](#) for the relative retention times.]

Table 3

Component	Relative Retention Time
<i>n</i> -Nonadecane ^a	0.63
9-Methyl nonadecane ^a	0.65
2-Octyl-1-decanol or 2-hexyl-1-dodecanol ^b	0.87
Stearyl alcohol ^c	0.95
Oleyl alcohol ^c	0.96
Linoleyl alcohol ^c	0.99
Octyldodecanol ^d	1.00
2-Octyl-1-tetradecanol or 2-decyl-1-dodecanol ^b	1.17
Any other unspecified related fatty alcohol or impurity	—

^a Alkane.

^b Related branched chain fatty alcohol.

^c Related linear chain fatty alcohol.

^d Sample.

Suitability requirements

Resolution: NLT 2.0 between the stearyl alcohol and oleyl alcohol peaks; NLT 2.0 between the linoleyl alcohol and octyldodecanol peaks, *System suitability solution*

Analysis

Samples: *System suitability solution* and *Sample solution*

Identify *n*-nonadecane, 9-methyl nonadecane, and each of the linear chain fatty alcohols and branched chain fatty alcohols in the *Sample solution* according to [Table 3](#).

Calculate the percentage of *n*-nonadecane (9-methyl nonadecane, each of the linear chain fatty alcohols and branched chain fatty alcohols, or any other unspecified related fatty alcohol or impurity) in the portion of Octyldodecanol taken:

$$\text{Result} = (r_u/r_T) \times 100$$

r_u = peak response of *n*-nonadecane (9-methyl nonadecane, each of the linear chain fatty alcohols and branched chain fatty alcohols, or any other unspecified related fatty alcohol or impurity) from the *Sample solution*

r_T = sum of all the peak responses, excluding peak responses due to solvent, from the *Sample solution*

Acceptance criteria: Disregard any unspecified peaks that are less than 0.05%, and any peaks due to solvent.

Sum of unspecified related fatty alcohols and impurities: NMT 1%

Sum of *n*-nonadecane, 9-methyl nonadecane, 2-octyl-1-decanol, 2-hexyl-1-dodecanol, 2-octyl-1-tetradecanol, and 2-decyl-1-dodecanol: NMT 1.5%

• **ORGANIC IMPURITY TEST 2: LIMIT OF BRANCHED CHAIN FATTY ALCOHOLS AND BRANCHED CHAIN ALDEHYDE**

System suitability solution: Prepare 1 mg/mL each of [USP Stearyl Alcohol RS](#), [USP Oleyl Alcohol RS](#), [USP Linoleyl Alcohol RS](#), and [USP Octyldodecanol RS](#) in ethanol, and heat the solution in a sealed container in a 50° water bath until all fatty alcohols are dissolved. Allow the solution to cool to room temperature, and mix well. Dilute the solution with ethanol to obtain a solution containing 0.05 mg/mL each of [USP Stearyl Alcohol RS](#), [USP Oleyl Alcohol RS](#), [USP Linoleyl Alcohol RS](#), and [USP Octyldodecanol RS](#).

Sample solution: 1 mg/mL of Octyldodecanol in ethanol

Chromatographic system: Proceed as directed in the Assay, except use split injection with a split ratio of 5:1 and run time of 30 min.

System suitability

Samples: System suitability solution and Sample solution

[NOTE—See [Table 4](#) for the relative retention times for branched chain fatty alcohols and branched chain aldehyde.]

Table 4

Component	Relative Retention Time
2-Octyl-1-decanol or 2-hexyl-1-dodecanol ^a	0.87
2-Octyldodecanal ^b	0.93
Staryl alcohol ^c	0.95
Oleyl alcohol ^c	0.96
Linoleyl alcohol ^c	0.99
Octyldodecanol ^d	1.00
2-Octyl-1-tetradecanol or 2-decyl-1-dodecanol ^a	1.17
Any other unspecified fatty alcohol or impurity	—

^a Related branched chain fatty alcohol.

^b Branched aldehyde.

^c Related linear chain fatty alcohol.

^d Sample.

Suitability requirements

Resolution: NLT 2.0 between the stearyl alcohol and oleyl alcohol peaks; NLT 2.0 between the linoleyl alcohol and octyldodecanol peaks,

System suitability solution

Analysis

Samples: System suitability solution and Sample solution

Identify each branched chain fatty alcohol peak and branched chain aldehyde peak in the *Sample solution* according to [Table 4](#).

Calculate the percentage of each branched chain fatty alcohol (2-octyl-1-decanol, 2-hexyl-1-dodecanol, 2-octyl-1-tetradecanol, or 2-decyl-1-dodecanol), branched chain aldehyde (2-octyldodecanal), or any unspecified fatty alcohol or impurity in the portion of Octyldodecanol taken:

$$\text{Result} = (r_u/r_T) \times 100$$

r_u = peak response of each branched chain fatty alcohol (2-octyl-1-decanol, 2-hexyl-1-dodecanol, 2-octyl-1-tetradecanol, or 2-decyl-1-dodecanol), branched chain aldehyde (2-octyldodecanal), or any unspecified fatty alcohol or impurity from the *Sample solution*

r_T = sum of all the peak responses, excluding peak responses due to solvent, from the *Sample solution*

Acceptance criteria: Disregard any unspecified peaks that are less than 0.05%, and any peaks due to solvent.

Sum of unspecified fatty alcohols and impurities: NMT 5%

Branched chain fatty alcohols (2-octyl-1-decanol, 2-hexyl-1-dodecanol, 2-octyl-1-tetradecanol, and 2-decyl-1-dodecanol): NMT 5%

Branched chain aldehyde (2-octyldodecanal): NMT 2%

SPECIFIC TESTS

- [FATS AND FIXED OILS \(401\), Procedures, Acid Value](#): NMT 0.5
- [FATS AND FIXED OILS \(401\), Procedures, Iodine Value](#): NMT 8
- [FATS AND FIXED OILS \(401\), Procedures, Peroxide Value](#): NMT 5.0
- [WATER DETERMINATION \(921\), Method I](#): NMT 0.5%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers.
- **LABELING:** If a test for *Impurities* other than *Organic Impurity Test 1* is used, the labeling states the test with which the article complies. Label it to indicate whether it is derived from vegetable, animal, or synthetic sources.
- [USP REFERENCE STANDARDS \(11\)](#)
 - [USP Cetyl Alcohol RS](#)
 - [USP Linoleyl Alcohol RS](#)
 - [USP Octyldodecanol RS](#)
 - [USP Oleyl Alcohol RS](#)
 - [USP Stearyl Alcohol RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
OCTYLDODECANOL	Documentary Standards Support	CE2020 Complex Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	CE2020 Complex Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 42(4)

Current DocID: GUID-104CF8F2-8147-4EA6-A4FF-636F3750CB61_3_en-US

Previous DocID: GUID-104CF8F2-8147-4EA6-A4FF-636F3750CB61_1_en-US

DOI: https://doi.org/10.31003/USPNF_M58320_03_01

DOI ref: 2j5i0