

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-Dec-2016
 Document Type: USP Monographs
 DocId: GUID-A55374AA-36D3-4315-AE8B-0E5458F1D1E0_1_en-US
 DOI: https://doi.org/10.31003/USPNF_M58310_01_01
 DOI Ref: lv1td

© 2025 USPC
 Do not distribute

Octreotide Acetate

$C_{49}H_{66}N_{10}O_{10}S_2 \cdot xC_2H_4O_2$ 1019 (as free base)

L-Cysteinamide, D-phenylalanyl-L-cysteinyl-L-phenylalanyl-D-tryptophyl-L-lysyl-L-threonyl-N-[2-hydroxy-1-(hydroxymethyl)propyl]-, cyclic (2→7)-disulfide, [R-(R*,R*)]-, acetate (salt);

D-Phenylalanyl-L-cysteinyl-L-phenylalanyl-D-tryptophyl-L-lysyl-L-threonyl-N-[(1R,2R)-2-hydroxy-1-(hydroxymethyl)propyl]-L-cysteinamide cyclic (2→7)-disulfide acetate (salt);

D-Phenylalanyl-L-hemicystyl-L-phenylalanyl-D-tryptophyl-L-lysyl-L-threonyl-L-hemicystyl-L-threoninol cyclic (2→7)-disulfide acetate (salt) CAS RN®: 79517-01-4; UNII: 75R0U2568I.

DEFINITION

Octreotide Acetate is a long-acting synthetic octapeptide with pharmacologic properties mimicking those of the natural hormone somatostatin.

It contains NLT 95.0% and NMT 105.0% of octreotide ($C_{49}H_{66}N_{10}O_{10}S_2$), calculated on the anhydrous, acetic acid-free basis.

IDENTIFICATION

• A. HPLC

Solution A, Solution B, Mobile phase, System suitability solution, Standard solution, Sample solution, Chromatographic system, and System suitability: Proceed as directed in the Assay.

Identification sample solution: Mix an equal volume of the *Standard solution* and the *Sample solution*.

Analysis

Samples: *Identification sample solution, Standard solution, and Sample solution*

Examine the chromatograms of the *Identification sample solution, Standard solution, and Sample solution*.

Acceptance criteria: The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, and the major peak of the *Identification sample solution* elutes as a single peak.

• B. AMINO ACID ANALYSIS

[NOTE—The following method is given for informational purposes; any validated amino acid analysis method can be used.]

Diluent: 0.1 M hydrochloric acid

Standard amino acid mixture: 2500 nmol/mL each of *Lys, His, NH₃, Arg, Asp, Thr, Ser, Glu, Pro, Gly, Ala, Val, Met, Ile, Leu, Tyr, Phe*, and 1250 nmol/mL of *Cys-Cys* in *Diluent*

Standard tryptophan solution: 0.2042 mg/mL of tryptophan in *Diluent*. This solution contains 1000 nmol/mL of *Trp*.

Standard threonin-ol solution: 0.1052 mg/mL of *Thr-ol* in *Diluent*. This solution contains 1000 nmol/mL *Thr-ol*. [NOTE—1000 nmol/mL = 1 mM]

Standard solution: *Diluent, Standard amino acid mixture, Standard tryptophan solution, and Standard threonin-ol solution* (76:4:10:10). The concentration is 100.0 nmol/mL for each amino acid.

Sample solution A: Weigh 1.00–1.50 mg of Octreotide Acetate into a 5-mL ampule. Add 1000 μ L of *Diluent* and 1.2 mL of 30% (w/w)

hydrochloric acid, cool the ampule in dry ice, evacuate, and seal by melting. Heat the ampule for 16 h at 115°. Allow to cool and transfer the

contents of the ampule quantitatively into a 25-mL round-bottomed flask, rinse with *Diluent*, and evaporate to dryness on a rotary evaporator. Dissolve the residue in 10.00 mL of *Diluent*.

Sample solution B: Weigh 1.00–1.50 mg of Octreotide Acetate into a 5-mL ampule. Add 1000 μ L of *Diluent* and 1.2 mL of 30% (w/w) hydrochloric acid with 1% (v/v) thioglycolic acid, cool the ampule in dry ice, evacuate, and seal by melting. Heat the ampule for 16 h in a heating block at 115°. Allow to cool and transfer the contents of the ampule quantitatively into a 25-mL round-bottomed flask, rinse with *Diluent*, and evaporate to dryness on a rotary evaporator. Dissolve the residue in 10.00 mL of *Diluent*.

Analysis

Samples: Standard solution, Sample solution A, and Sample solution B

Standardize the instrument with the *Standard solution*. Inject a suitable volume of *Standard solution*, *Sample solution A*, and *Sample solution B*. Evaluate the peak areas of each amino acid found in relation to the peak areas of the respective amino acids in the *Standard solution*, express the content of each amino acid in nmoles.

Calculate *A*, the average number of nmoles of the amino acids found to be stable under hydrolysis conditions (three stable amino acids—2 *Phe* and 1 *Lys*) taken:

$$A = N_T/3$$

N_T = total nmoles of the stable amino acids

Calculate the ratio of the amino acids taken:

$$\text{Result} = N_E/A$$

N_E = nmoles of each amino acid

[NOTE—For *Trp* use only data obtained with *Sample solution B*. For *Cys* use only data obtained with *Sample solution A*.]

Acceptance criteria: See [Table 1](#).

Table 1

Name	Acceptance Criteria
<i>Thr</i>	0.7–1.1
<i>Lys</i>	0.9–1.3
<i>Phe</i>	1.8–2.2
<i>Trp</i>	0.4–1.1
<i>Cys</i>	1.0–2.2
<i>Thr-ol</i>	0.6–1.3

ASSAY

- **PROCEDURE**

Solution A: 0.02% (v/v) of trifluoroacetic acid in water

Solution B: Acetonitrile

Mobile phase: See [Table 2](#).

Table 2

Time (min)	Solution A (%)	Solution B (%)
0	90	10
25	65	35
30	10	90

Time (min)	Solution A (%)	Solution B (%)
35	10	90
40	90	10
45	90	10

System suitability solution: 0.5 mg/mL of [USP Octreotide Acetate RS](#) and 0.2 mg/mL of [USP Octreotide Non-Cyclic System Suitability Marker RS](#) in *Solution A*

Standard solution: 0.5 mg/mL of [USP Octreotide Acetate RS](#) in *Solution A*

Sample solution: 0.5 mg/mL of Octreotide Acetate in *Solution A*. [NOTE—Place Octreotide Acetate in a desiccator containing saturated sodium chloride solution for at least 30 min before weighing. Determine the water content by suitable analysis.]

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 25-cm; 4-μm packing L87

Column temperature: 40°

Flow rate: 1 mL/min

Injection volume: 10 μL

System suitability

Samples: *System suitability solution* and *Standard solution*

[NOTE—The retention times for octreotide and non-cyclic octreotide in the *System suitability solution* are about 16.5 and 18.5 min, respectively.]

Suitability requirements

Resolution: NLT 2.0 between octreotide and non-cyclic octreotide, *System suitability solution*

Relative standard deviation: NMT 2.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of octreotide ($C_{49}H_{66}N_{10}O_{10}S_2$) in the portion of Octreotide Acetate taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times [100/(100 - W - Ac)] \times 100$$

r_U = peak response of octreotide from the *Sample solution*

r_S = peak response of octreotide from the *Standard solution*

C_S = concentration of [USP Octreotide Acetate RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Octreotide Acetate in the *Sample solution* (mg/mL)

W = water content in the Octreotide Acetate sample (%)

Ac = acetic acid content in the Octreotide Acetate sample (%)

Acceptance criteria: 95.0%–105.0% on the anhydrous, acetic acid-free basis

OTHER COMPONENTS

- [ACETIC ACID IN PEPTIDES \(503\)](#): 5.0%–12.8%

PRODUCT-RELATED SUBSTANCES AND IMPURITIES

- **OCTREOTIDE ACETATE RELATED COMPOUNDS**

[NOTE—Manufacturers should determine the suitability of their related substances method for their process-related and degradation impurities.

For any impurity peak above the limit for unspecified impurity peaks, identification and appropriate qualification is required.]

Solution A, Solution B, Mobile phase, System suitability solution, Sample solution, Chromatographic system, and System

suitability: Proceed as directed in the Assay.

Analysis

Sample: *Sample solution*

Calculate the percentage of each impurity taken, disregarding any peak with a retention time of less than 5 min and any peak with an area less than 0.1% of the main peak:

$$\text{Result} = (r_U/r_T) \times 100$$

r_U = peak response of each impurity from the *Sample solution*

r_T = sum of the peak responses from the *Sample solution*, excluding those of the solvent peaks

Acceptance criteria: See [Table 3](#).

Table 3

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Acetyl-Lys ⁵ -octreotide ^a	1.4	0.5
Acetyl-Phe ¹ -octreotide ^b	1.5	0.5
Unspecified impurity	—	0.5
Total impurities	—	2.0

^a D-Phenylalanyl-L-hemicystyl-L-phenylalanyl-D-tryptophyl-(N-acetyl)-L-lysyl-L-threonyl-L-hemicystyl-L-threoninol cyclic (2→7)-disulfide.

^b (N-Acetyl)-D-Phenylalanyl-L-hemicystyl-L-phenylalanyl-D-tryptophyl-L-lysyl-L-threonyl-L-hemicystyl-L-threoninol cyclic (2→7)-disulfide.

PROCESS-RELATED IMPURITIES

- [TRIFLUOROACETIC ACID \(TFA\) IN PEPTIDES \(503.1\)](#): NMT 0.25%.

[NOTE—Perform this test if trifluoroacetic acid is used in the manufacturing process.]

SPECIFIC TESTS

- [WATER DETERMINATION \(921\), Method I](#): NMT 10.0%
- [BACTERIAL ENDOTOXINS TEST \(85\)](#): NMT 466 USP Endotoxin Units/mg of octreotide acetate
- [MICROBIAL ENUMERATION TESTS \(61\)](#) AND [TESTS FOR SPECIFIED MICROORGANISMS \(62\)](#): The total aerobic microbial count is NMT 100 cfu/g. The total yeast and mold count is NMT 100 cfu/g.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in air-tight containers. Store at a temperature of 2°–8°, protected from light.

- [USP REFERENCE STANDARDS \(11\)](#):

[USP Endotoxin RS](#)

[USP Octreotide Acetate RS](#)

[USP Octreotide Non-Cyclic System Suitability Marker RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
OCTREOTIDE ACETATE	Ying Han Associate Science & Standards Liaison	BIO12020 Biologics Monographs 1 - Peptides
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	BIO12020 Biologics Monographs 1 - Peptides

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 41(4)

Current DocID: GUID-A55374AA-36D3-4315-AE8B-0E5458F1D1E0_1_en-US

DOI: https://doi.org/10.31003/USPNF_M58310_01_01

DOI ref: lv1td

OFFICIAL