

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-C667FF48-9712-45A9-A443-36E6A5711437_5_en-US
 DOI: https://doi.org/10.31003/USPNF_M56625_05_01
 DOI Ref: ge2mq

© 2025 USPC
 Do not distribute

Nicotine Polacrilex

$[(C_4H_6O_2)_x(C_{10}H_{10})_y](C_{10}H_{14}N_2)$

2-Propenoic acid, 2-methyl-, polymer with diethenylbenzene, complex with (S)-3-(1-methyl-2-pyrrolidinyl)pyridine;
 Methacrylic acid polymer with divinylbenzene, complex with nicotine CAS RN®: 96055-45-7.

DEFINITION

Nicotine Polacrilex is a weak carboxylic cation-exchange resin prepared from methacrylic acid and divinylbenzene, in complex with nicotine. It may contain glycerin. Glycerin-free Nicotine Polacrilex contains NLT 95.0% and NMT 115.0% of the labeled amount of nicotine ($C_{10}H_{14}N_2$), calculated on the dried basis. Glycerin-containing Nicotine Polacrilex contains NLT 95.0% and NMT 115.0% of the labeled amount of nicotine ($C_{10}H_{14}N_2$), calculated on the anhydrous basis.

[NOTE—Nicotine Polacrilex is also known as Nicotine Resinate.]

IDENTIFICATION

Change to read:

- A. **▲ SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy (for Nicotine)**: 197K or 197A▲ (CN 1-May-2020)

Sample: Transfer an amount of Nicotine Polacrilex equivalent to 100 mg of nicotine to a 100-mL glass-stoppered tube. Add 20 mL of 1 M ammonium hydroxide, 5 mL of [10 M sodium hydroxide](#), and 20 mL of [n-hexane](#). Shake for 5 min, and allow the phases to separate. Transfer the upper hexane phase to an evaporating dish, and evaporate on a steam bath.

Standard: Use [USP Nicotine Bitartrate Dihydrate RS](#), and prepare as directed for the *Sample*.

Acceptance criteria: Meets the requirements

Change to read:

- B. **▲ SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy (for Polacrilex)**: 197K or 197A▲ (CN 1-May-2020)

Standard: Transfer a portion of [USP Polacrilex Resin RS](#), equivalent to the amount of Nicotine Polacrilex used to prepare the *Sample solution* in the Assay, to a glass-stoppered tube. Add 10 mL of 1 M ammonium hydroxide, shake for 10 min, and then centrifuge. Decant the ammonia solution from the residue, and wash the residue by shaking it with three 10-mL volumes of water, decanting the water phase after each shaking. Wash with 10 mL of [0.1 N hydrochloric acid](#), decant the liquid, and dry the residue at 105°.

Sample: Use the residue obtained from the *Sample solution* in the Assay. Decant the ammonia solution remaining from the residue, and wash the residue by shaking it with three 10-mL volumes of [water](#), decanting the water phase after each shaking. Wash with 10 mL of [0.1 N hydrochloric acid](#), decant the liquid, and dry the residue at 105°.

Acceptance criteria: Meets the requirements

- C. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Solution A: Add 25 mL of 1 M acetic acid to 900 mL of [water](#), and then add 6 mL of [ammonium hydroxide](#). Adjust with either 2 M acetic acid or 2 M ammonium hydroxide to a pH of 10.0, and dilute with [water](#) to 1000 mL.

Solution B: [Acetonitrile](#)

Mobile phase: See [Table 1](#). [NOTE—Re-equilibration time may be adjusted, if necessary.]

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	100	0
3	100	0
3.01	95	5
28	74	26
32	60	40
33	100	0
35	100	0

System suitability solution: 1.5 mg/mL of [USP Nicotine Bitartrate Dihydrate RS](#) and 6 µg/mL of [USP Nicotine Related Compound G RS](#) in [water](#)

Standard solution: 1.8 mg/mL of [USP Nicotine Bitartrate Dihydrate RS](#) in [water](#)

Sample solution: Nominally 0.6 mg/mL of nicotine prepared as follows. Transfer an amount of Nicotine Polacrilex equivalent to 30 mg of nicotine to a glass-stoppered tube. Add 10.0 mL of 1 M ammonium hydroxide, shake vigorously for 10 min, and then centrifuge. Transfer 5.0 mL of the clear solution to a 25-mL volumetric flask, add 5 mL of 1 M acetic acid, and dilute with [water](#) to volume. Retain the residue from centrifugation for use in *Identification B*.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 15-cm; 5-µm packing [L1](#)

Flow rate: 1.0 mL/min

Injection volume: 20 µL

System suitability

Samples: System suitability solution and Standard solution

[NOTE—See [Table 2](#) for the relative retention times.]

Suitability requirements

Resolution: NLT 2.5 between nicotine and nicotine related compound G, System suitability solution

Tailing factor: NMT 2.0 for nicotine, System suitability solution

Relative standard deviation: NMT 1.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of nicotine ($C_{10}H_{14}N_2$) in the portion of Nicotine Polacrilex taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak response of nicotine from the Sample solution

r_S = peak response of nicotine from the Standard solution

C_S = concentration of [USP Nicotine Bitartrate Dihydrate RS](#) on the anhydrous basis in the Standard solution (mg/mL)

C_U = nominal concentration of nicotine in the Sample solution (mg/mL)

M_{r1} = molecular weight of nicotine, 162.23

M_{r2} = molecular weight of anhydrous nicotine bitartrate, 462.41

Acceptance criteria:**Glycerin free:** 95.0%–115.0% on the dried basis**Glycerin containing:** 95.0%–115.0% on the anhydrous basis**PERFORMANCE TESTS**• **NICOTINE RELEASE****Solution A:** 9 mg/mL of [sodium chloride](#) in water**Sample stock solution:** Transfer an amount of Nicotine Polacrilex equivalent to 4 mg of nicotine to a glass-stoppered tube, add 10.0 mL of *Solution A* that has been warmed to 37°, and shake by mechanical means for 10 min. Immediately pass the liquid through a dry filter paper, discarding the first milliliter of the filtrate.**Sample solution:** Transfer 1.0 mL of the *Sample stock solution* to a 25-mL volumetric flask, and dilute with [0.1 N hydrochloric acid](#) to volume.**Instrumental conditions**(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)**Mode:** UV**Analytical wavelengths:** 236, 259, and 282 nm**Blank:** 1.0 mL of *Solution A* diluted with [0.1 N hydrochloric acid](#) to 25 mL**Analysis****Samples:** *Sample solution* and *Blank*Calculate the percentage of nicotine ($C_{10}H_{14}N_2$) released:

$$\text{Result} = (A_{259} - 0.5A_{236} - 0.5A_{282}) \times (V/E) \times (F/W) \times (1/P) \times 100$$

 A_{259} = absorbance of the *Sample solution*, corrected for the *Blank* absorbance, at a wavelength of 259 nm A_{236} = absorbance of the *Sample solution*, corrected for the *Blank* absorbance, at a wavelength of 236 nm A_{282} = absorbance of the *Sample solution*, corrected for the *Blank* absorbance, at a wavelength of 282 nm V = dilution volume, 250 mL E = specific absorbance of nicotine at a wavelength of 259 nm, 323 $\text{mL g}^{-1} \text{cm}^{-1}$ F = unit conversion factor, 1000 mg/g W = weight of Nicotine Polacrilex (mg) P = percentage of nicotine in Nicotine Polacrilex determined in the Assay**Acceptance criteria:** NLT 70% in 10 min**IMPURITIES**• **ORGANIC IMPURITIES****Solution A, Solution B, Mobile phase, Sample solution, and Chromatographic system:** Proceed as directed in the Assay.**System suitability solution:** 1.5 mg/mL of [USP Nicotine Bitartrate Dihydrate RS](#) and 6 $\mu\text{g/mL}$ each of [USP Nicotine Related Compound A RS](#), [USP Nicotine Related Compound B RS](#), [USP Nicotine Related Compound C RS](#), [USP Nicotine Related Compound D RS](#), [USP Nicotine Related Compound E RS](#), [USP Nicotine Related Compound F RS](#), and [USP Nicotine Related Compound G RS](#) in [water](#). [NOTE—The concentration of each related compound is in terms of the free base.]**Standard solution:** 1.8 $\mu\text{g/mL}$ of [USP Nicotine Bitartrate Dihydrate RS](#) in [water](#)**Sensitivity solution:** 0.9 $\mu\text{g/mL}$ of [USP Nicotine Bitartrate Dihydrate RS](#) in [water](#) from the *Standard solution***System suitability****Samples:** *System suitability solution*, *Standard solution*, and *Sensitivity solution*[NOTE—See [Table 2](#) for the relative retention times.]**Suitability requirements****Resolution:** NLT 2.5 between nicotine and nicotine related compound G, *System suitability solution***Tailing factor:** NMT 2.0 for nicotine, *System suitability solution***Relative standard deviation:** NMT 5.0%, *Standard solution***Signal-to-noise ratio:** NLT 10, *Sensitivity solution***Analysis****Samples:** *Sample solution* and *Standard solution*

Calculate the percentage of each impurity in the portion of Nicotine Polacrilex taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak response of each impurity from the *Sample solution*

r_S = peak response of nicotine from the *Standard solution*

C_S = concentration of [USP Nicotine Bitartrate Dihydrate RS](#) on the anhydrous basis in the *Standard solution* (mg/mL)

C_U = nominal concentration of nicotine in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of nicotine, 162.23

M_{r2} = molecular weight of anhydrous nicotine bitartrate, 462.41

Acceptance criteria: See [Table 2](#). The reporting threshold is 0.05%.

Table 2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Nicotine related compound E	0.3	0.3
Nicotine related compound C	0.55	0.3
Nicotine related compound F	0.7	0.3
Nicotine related compound A	0.8	0.3
Nicotine related compound D	0.86	0.3
Nicotine related compound G	0.9	0.3
Nicotine	1.00	—
Nicotine related compound B	1.6	0.3
Any other unspecified impurity	—	0.10
Total impurities	—	0.8

SPECIFIC TESTS

- [WATER DETERMINATION \(921\)](#), *Method I* (for glycerin-containing Nicotine Polacrilex)

Sample solution: Transfer about 1.0 g of Nicotine Polacrilex to a 50-mL glass-stoppered test tube, and add 20.0 mL of methanol. Shake for 30 min, and allow to stand for 30 min. Use a 10-mL portion of the methanol layer for the titration.

Acceptance criteria: NMT 5.0%

- [LOSS ON DRYING \(731\)](#) (for glycerin-free Nicotine Polacrilex)

Analysis: Dry at 105° for 2 h.

Acceptance criteria: NMT 7.0%

ADDITIONAL REQUIREMENTS

- [PACKAGING AND STORAGE:](#) Preserve in tight containers, protected from light.

- [LABELING:](#) Label to indicate if the article contains glycerin.

- [USP REFERENCE STANDARDS \(11\)](#).

[USP Nicotine Bitartrate Dihydrate RS](#)

[USP Nicotine Related Compound A RS](#)

Anatabine;

1,2,3,6-Tetrahydro-2,3'-bipyridine.

$C_{10}H_{12}N_2$ 160.22

USP Nicotine Related Compound B RS

3-(1-Methyl-1*H*-pyrrol-2-yl)pyridine; Also known as Nicotyrine.
 $C_{10}H_{10}N_2$ 158.20

USP Nicotine Related Compound C RS

(S)-1-Methyl-5-(pyridin-3-yl)pyrrolidin-2-one; Also known as Cottinine.
 $C_{10}H_{12}N_2O$ 176.22

USP Nicotine Related Compound D RS

3-(4,5-Dihydro-3*H*-pyrrol-2-yl)pyridine fumarate; Also known as Myosamine.
 $C_9H_{10}N_2 \cdot C_4H_4O_4$ 262.26

USP Nicotine Related Compound E RS

(1*RS*,2*S*)-1-Methyl-2-(pyridin-3-yl)pyrrolidine 1-oxide oxalate; Also known as Nicotine *N*-oxide.
 $C_{10}H_{14}N_2O \cdot C_2H_2O_4$ 268.27

USP Nicotine Related Compound F RS

3-(Pyrrolidin-2-yl)pyridine; Also known as Nornicotine.
 $C_9H_{12}N_2$ 148.20

USP Nicotine Related Compound G RS

(S)-3-(Piperidin-2-yl)pyridine; Also known as Anabasine.
 $C_{10}H_{14}N_2$ 162.23

USP Polacrilex Resin RS

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
NICOTINE POLACRILEX	Documentary Standards Support	SM42020 Small Molecules 4
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 44(1)

Current DocID: GUID-C667FF48-9712-45A9-A443-36E6A5711437_5_en-US

DOI: https://doi.org/10.31003/USPNF_M56625_05_01

DOI ref: [ge2mq](#)