

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-Feb-2025
 Document Type: USP Monographs
 DocId: GUID-C3EA9EE6-2613-467C-941C-F08E4809F499_8_en-US
 DOI: https://doi.org/10.31003/USPNF_M3807_08_01
 DOI Ref: 9q9h3

© 2025 USPC
 Do not distribute

Nicardipine Hydrochloride Injection

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click
<https://www.uspnf.com/rb-nicardipine-hcl-inj-20250131>.

DEFINITION

Nicardipine Hydrochloride Injection is a sterile solution of Nicardipine Hydrochloride. It contains NLT 90.0% and NMT 110.0% of the labeled amount of nicardipine hydrochloride ($C_{26}H_{29}N_3O_6 \cdot HCl$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- **B.** The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: 1.36 g/L of [monobasic potassium phosphate](#) in [water](#)

Mobile phase: [Methanol](#) and [Buffer](#) (80:20)

Diluent: [Acetonitrile](#) and [Buffer](#) (50:50)

Standard solution: 0.1 mg/mL of [USP Nicardipine Hydrochloride RS](#) in [Diluent](#). Sonication may be used to aid in dissolution. Pass through a suitable filter of 0.45- μ m pore size. Discard the first 2–3 mL of the filtrate.

Sample solution: Nominally 0.1 mg/mL of nicardipine hydrochloride in [Diluent](#) from a suitable volume of [Injection](#). Pass through a suitable filter of 0.45- μ m pore size. Discard the first 2–3 mL of filtrate. [NOTE—The *Sample solution* is stable for about 26 h.]

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm. For *Identification B*, use a diode array detector in the range of 200–400 nm.

Column: 4.6-mm \times 25-cm; 5- μ m packing [L1](#)

Column temperature: 40°

Flow rate: 1 mL/min

Injection volume: 20 μ L

Run time: NLT 2 times the retention time of nicardipine

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of nicardipine hydrochloride ($C_{26}H_{29}N_3O_6 \cdot HCl$) in the portion of [Injection](#) taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of nicardipine from the *Sample solution*

r_S = peak response of nicardipine from the *Standard solution*

C_S = concentration of [USP Nicardipine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of nicardipine hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–110.0%

IMPURITIES

• LIMIT OF *N*-BENZYL-*N*-METHYL-ETHANOLAMINE

Solution A: Dissolve 2.80 g of sodium perchlorate monohydrate in 1 L of water. Adjust with perchloric acid to a pH of 2.5.

Solution B: Acetonitrile and methanol (50:50)

Diluent: Acetonitrile and water (20:80)

Mobile phase: See Table 1.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	95	5
10	82	18
12	20	80
22	20	80
24	95	5
32	95	5

Standard solution: 2.5 µg/mL of USP *N*-Benzyl-*N*-methyl-ethanolamine RS in *Diluent* prepared as follows. To a suitable amount of USP *N*-Benzyl-*N*-methyl-ethanolamine RS, add *Diluent* to 70% of the final volume. Sonicate to dissolve. Cool, and dilute with *Diluent* to volume. Pass the solution through a suitable filter of 0.45-µm pore size.

Sample solution: Nominally 0.5 mg/mL of nicardipine hydrochloride in *Diluent* from a suitable volume of *Injection*. Pass the solution through a suitable filter of 0.45-µm pore size.

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 205 nm

Column: 4.6-mm × 15-cm; 5-µm packing L1

Temperatures

Autosampler: 10°

Column: 30°

Flow rate: 1.5 mL/min

Injection volume: 50 µL

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 5.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of *N*-benzyl-*N*-methyl-ethanolamine in the portion of *Injection* taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of *N*-benzyl-*N*-methyl-ethanolamine from the *Sample solution*

r_S = peak response of *N*-benzyl-*N*-methyl-ethanolamine from the *Standard solution*

C_s = concentration of [USP N-Benzyl-N-methyl-ethanolamine RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of nicardipine hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: NMT 0.7%

• **ORGANIC IMPURITIES**

Solution A: 3.5 g/L of [sodium perchlorate monohydrate](#) in [water](#). Add 1 mL/L of [triethylamine](#), and adjust with [perchloric acid](#) to a pH of 2.0.

Solution B: [Acetonitrile](#) and [methanol](#) (70:30)

Mobile phase: See [Table 2](#).

Table 2

Time (min)	Solution A (%)	Solution B (%)
0	70	30
15	70	30
55	35	65
60	35	65
62	70	30
70	70	30

Standard solution: 0.02 mg/mL of [USP Nicardipine Hydrochloride RS](#) in [methanol](#) prepared as follows. To a suitable amount of [USP Nicardipine Hydrochloride RS](#) add [methanol](#) to 60% of the final volume. Sonicate to dissolve. Cool, and dilute with [methanol](#) to volume.

Pass the solution through a suitable filter of 0.45-μm pore size.

Sensitivity solution: 0.002 mg/mL of [USP Nicardipine Hydrochloride RS](#) in [methanol](#) from *Standard solution*

Sample solution: Nominally 2 mg/mL of nicardipine hydrochloride in [methanol](#) from a suitable volume of *Injection*. Pass the solution through a suitable filter of 0.45-μm pore size. [NOTE—The *Sample solution* is stable for about 42 h at 10°.]

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 239 nm

Column: 4.6-mm × 15-cm; 5-μm packing [L1](#)

Temperatures

Autosampler: 10°

Column: 50°

Flow rate: 1 mL/min

Injection volume: 10 μL

System suitability

Samples: *Standard solution* and *Sensitivity solution*

Suitability requirements

Tailing factor: NMT 2.0, *Standard solution*

Relative standard deviation: NMT 5.0%, *Standard solution*

Signal-to-noise ratio: NLT 10, *Sensitivity solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of each specified impurity and any unspecified degradation product in the portion of *Injection* taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

r_u = peak response of each specified impurity or any unspecified degradation product from the *Sample solution*

r_s = peak response of nicardipine from the *Standard solution*

C_S = concentration of [USP Nicardipine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of nicardipine hydrochloride in the *Sample solution* (mg/mL)

F = relative response factor (see [Table 3](#))

Acceptance criteria: See [Table 3](#).

Table 3

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Nicardipine monoacid (nicardipine related compound A) ^a	0.72	1.00	0.2
Nicardipine pyridine analog (nicardipine related compound B) ^b	0.94	0.42	2.5
Nicardipine	1.00	1.00	—
Any unspecified degradation product	—	—	0.2
Total impurities ^c	—	—	3.5

^a 5-(Methoxycarbonyl)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3-carboxylic acid.

^b 3-{2[Benzyl(methyl)amino]ethyl} 5-methyl 2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate.

^c Total impurities include the sum of all organic impurities and N-benzyl-N-methyl-ethanolamine.

OTHER COMPONENTS

• CONTENT OF SORBITOL (if present)

Buffer: 1 g/L of [tetrabutylammonium hydrogen sulfate](#) in [water](#)

Mobile phase: [Acetonitrile](#) and **Buffer** (70:30)

Standard solution: 4.8 mg/mL of [USP Sorbitol RS](#) in *Mobile phase*. Pass the solution through a suitable filter of 0.45- μ m pore size. Sonication may be necessary to aid in dissolution.

Sample solution: Nominally 4.8 mg/mL of sorbitol in *Mobile phase* from the contents of NLT 3 Injection vials. Pass the solution through a suitable filter of 0.45- μ m pore size. [NOTE—*Sample solution* is stable for about 24 h.]

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Refractive index

Column: 4.6-mm \times 25-cm; 5- μ m packing [L8](#)

Temperatures

Column: 40°

Detector: 50°

Flow rate: 1 mL/min

Injection volume: 25 μ L

Run time: NLT 2 times the retention time of sorbitol

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis**Samples:** Standard solution and Sample solutionCalculate the percentage of the labeled amount of sorbitol ($C_6H_{14}O_6$) in the portion of Injection taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of sorbitol from the Sample solution r_S = peak response of sorbitol from the Standard solution C_S = concentration of [USP Sorbitol RS](#) in the Standard solution (mg/mL) C_U = nominal concentration of sorbitol in the Sample solution (mg/mL)**Acceptance criteria:** 90.0%–110.0%**SPECIFIC TESTS**

- [BACTERIAL ENDOTOXINS TEST \(85\)](#): Meets the requirements
- [STERILITY TESTS \(71\)](#): Meets the requirements
- [pH \(791\)](#): 3.0–4.2
- [PARTICULATE MATTER IN INJECTIONS \(788\)](#): Meets the requirements for small-volume injections
- **OTHER REQUIREMENTS:** Meets the requirements for [Injections and Implanted Drug Products \(1\)](#).

ADDITIONAL REQUIREMENTS**Change to read:**

- **PACKAGING AND STORAGE:** Preserve in single-dose glass vials. ▲Protect from light.▲ (RB 1-Feb-2025) Store at controlled room temperature.
- **LABELING:** Label it to indicate that it is to be diluted to the appropriate strength with a suitable intravenous fluid prior to administration.

- [USP REFERENCE STANDARDS \(11\)](#):

[USP N-Benzyl-N-methyl-ethanolamine RS](#)2-[Benzyl(methyl)amino]ethanol.
 $C_{10}H_{15}NO$ 165.23[USP Nicardipine Hydrochloride RS](#)[USP Sorbitol RS](#)D-Glucitol.
 $C_6H_{14}O_6$ 182.17**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
NICARDIPINE HYDROCHLORIDE INJECTION	Documentary Standards Support	SM22020 Small Molecules 2
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 44(4)

Current DocID: GUID-C3EA9EE6-2613-467C-941C-F08E4809F499_8_en-US**DOI:** https://doi.org/10.31003/USPNF_M3807_08_01**DOI ref:** [9q9h3](#)