

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-Aug-2020
 Document Type: USP Monographs
 DocId: GUID-9975432C-AF3C-4FFF-A9D9-79620B8BEE2D_7_en-US
 DOI: https://doi.org/10.31003/USPNF_M56534_07_01
 DOI Ref: g5rns

© 2025 USPC
 Do not distribute

Niacin Extended-Release Tablets

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click
<https://www.uspnf.com/rb/niacin-ert-20200731>.

DEFINITION

Niacin Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of niacin ($C_6H_5NO_2$).

IDENTIFICATION

- A. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

Change to read:

• PROCEDURE

Diluent: Methanol and water (82:18)

Mobile phase: Methanol and water (82:18), adjusted with glacial acetic acid to a pH of 3.15 ± 0.05

Standard solution: 250 μ g/mL of [USP Niacin RS](#), 50 μ g/mL of [USP 6-Hydroxynicotinic Acid RS](#), and 97.8 μ g/mL of pyridine in *Diluent*

Sample solution: Transfer a quantity of powder, equivalent to 50 mg of niacin from NLT 20 finely powdered Tablets, to a suitable flask, add *Diluent*, and stir for 2 h. Dilute with *Diluent* to a final concentration of 250 μ g/mL of niacin.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 260 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing L8

Flow rate: 1.0 mL/min

Injection volume: 25 μ L

System suitability

Sample: *Standard solution*

[NOTE—See

▲ [Table 14](#) ▲ (RB 1-Aug-2020) for relative retention times.]

Suitability requirements

Resolution: NLT 1.5 between pyridine and 6-hydroxynicotinic acid, and NLT 1.5 between 6-hydroxynicotinic acid and niacin

Relative standard deviation: NMT 3.0% for each of the peaks

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of niacin ($C_6H_5NO_2$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak area of niacin from the *Sample solution*

r_S = peak area of niacin from the *Standard solution*

C_S = concentration of [USP Niacin RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of niacin in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS**Change to read:**

- [Dissolution \(711\)](#).

Test 1

Medium: Water; 900 mL

Apparatus 1: 100 rpm

Times: 1, 3, 6, 9, 12, and 20 h; without *Medium* replacement. [NOTE—Withdraw the same volume at each time point.]

Solution A: Solution of sodium heptanesulfonate in acetic acid, methanol, and water (4:44:33:19), w/w¹

Mobile phase: Mixture of methanol, water, and *Solution A* (560:440:25)

Standard solution: [USP Niacin RS](#) at a known concentration in water in the range of 75–750 µg/mL

Sample solution: Filtered portion of the solution under test suitably diluted with *Medium* if necessary

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 3.9-mm × 15-cm; 10-µm packing L1

Flow rate: 1.0 mL/min

Injection volume: 15 µL

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Determine, in mg/mL, the content of niacin ($C_6H_5NO_2$) in the *Medium* at each time point:

$$\text{Result} = (r_U/r_S) \times C_S \times D$$

r_U = peak area of niacin from the *Sample solution*

r_S = peak area of niacin from the *Standard solution*

C_S = concentration of [USP Niacin RS](#) in the *Standard solution* (mg/mL)

D = dilution factor for the *Sample solution*

Calculate the percentage of the labeled amount of niacin ($C_6H_5NO_2$) dissolved at each time point:

At 1 h:

$$\text{Result}_1 = (C_1 \times V/L) \times 100$$

At 3 h:

$$\text{Result}_2 = [C_2 \times (V - V_S) + C_1 \times V_S] \times 100/L$$

At 6 h:

$$\text{Result}_3 = [C_3 \times (V - 2 \times V_S) + (C_1 + C_2) \times V_S] \times 100/L$$

At 9 h:

$$\text{Result}_4 = [C_4 \times (V - 3 \times V_S) + (C_1 + C_2 + C_3) \times V_S] \times 100/L$$

At 12 h:

$$\text{Result}_5 = [C_5 \times (V - 4 \times V_S) + (C_1 + C_2 + C_3 + C_4) \times V_S] \times 100/L$$

At 20 h:

$$\text{Result}_6 = [C_6 \times (V - 5 \times V_S) + (C_1 + C_2 + C_3 + C_4 + C_5) \times V_S] \times 100/L$$

C = as C_1, C_2, \dots, C_6 , the content of niacin in the *Medium* at each time point (mg/mL)

V = volume of *Medium*, 900 mL

V_s = volume of sample withdrawn at each time point (mL)

L = label claim (mg/Tablet)

Tolerances: The percentage of the labeled amount of niacin ($C_6H_5NO_2$) dissolved at the times specified in [Table 1](#), [Table 2](#), and [Table 3](#) conforms to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Table 1. For Tablets Labeled to Contain 500 mg or Less/Tablet

Time (h)	Amount Dissolved (%)
1	NMT 15
3	17-32
6	33-48
9	43-63
12	52-77
20	NLT 75

Table 2. For Tablets Labeled to Contain 750 mg/Tablet

Time (h)	Amount Dissolved (%)
1	NMT 15
3	16-31
6	31-46
9	42-62
12	51-76
20	NLT 75

Table 3. For Tablets Labeled to Contain 1000 mg/Tablet

Time (h)	Amount Dissolved (%)
1	NMT 15
3	15-30
6	30-45
9	40-60
12	50-75
20	NLT 75

Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*.

Acid stage medium: 0.1 N hydrochloric acid; 900 mL

Buffer stage medium: 6.8 g of monobasic potassium phosphate and 0.89 g of sodium hydroxide pellets in 1000 mL of water. Adjust with diluted sodium hydroxide or phosphoric acid to a pH of 6.8; 900 mL.

Apparatus 1: 100 rpm

Times: 1, 4, 12, and 24 h: 1 and 4 h in the *Acid stage medium*; 12 and 24 h in the *Buffer stage medium*. Replace the volume withdrawn with the equal volume of medium preheated to $37 \pm 0.5^\circ\text{C}$.

Procedure: After 4 h replace the *Acid stage medium* with the *Buffer stage medium*, and run the test for the times specified (additional 20 h for a total of 24 h).

[**NOTE**—Withdraw the same volume at each time point. Pass a portion of the solution through a suitable filter.]

Standard stock solution: 0.2 mg/mL of [USP Niacin RS](#) in water

Standard solution 1: Dilute *Standard stock solution* with *Acid stage medium* to a final concentration of 0.01 mg/mL of [USP Niacin RS](#).

Standard solution 2: Dilute *Standard stock solution* with *Buffer stage medium* to a final concentration of 0.01 mg/mL of [USP Niacin RS](#).

Sample solution

For Tablets labeled to contain 500 mg: Dilute a filtered portion of the solution under test with appropriate dissolution medium 25-fold.

For Tablets labeled to contain 750 mg: Dilute a filtered portion of the solution under test with appropriate dissolution medium 33-fold.

For Tablets labeled to contain 1000 mg: Dilute a filtered portion of the solution under test with appropriate dissolution medium 50-fold.

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: 262 nm

Path length: 1 cm

Blank: *Acid stage medium* or *Buffer stage medium*

Analysis

Samples: *Standard solution 1* or *Standard solution 2* and *Sample solution*

Determine the concentration, in mg/mL, of niacin ($\text{C}_6\text{H}_5\text{NO}_2$) in the sample withdrawn from the vessel at each time point:

$$\text{Result} = [(A_U - A_B)/A_S] \times C_S \times D$$

A_U = absorbance of the *Sample solution*

A_B = absorbance of the *Blank*

A_S = absorbance of the *Standard solution*

C_S = concentration of [USP Niacin RS](#) in the *Standard solution* (mg/mL)

D = dilution factor for the *Sample solution*

Calculate the percentage of the labeled amount of niacin ($\text{C}_6\text{H}_5\text{NO}_2$) dissolved at each time point:

At 1 h:

$$\text{Result}_1 = (C_1 \times V) \times 100/L$$

At 4 h:

$$\text{Result}_2 = (C_2 \times V + C_1 \times V_S) \times 100/L$$

At 12 h:

$$\text{Result}_3 = [(C_3 + C_2) \times V + C_1 \times V_S] \times 100/L$$

At 24 h:

$$\text{Result}_4 = [(C_4 + C_3) \times V + (C_1 + C_2) \times V_S] \times 100/L$$

C = as C_1, \dots, C_4 , the content of niacin in the related dissolution medium at each time point (mg/mL)

V = volume of *Medium*, 900 mL

V_S = volume of sample withdrawn at each time point (mL)

L = label claim (mg/Tablet)

Tolerances: The percentage of the labeled amount of niacin ($C_6H_5NO_2$) dissolved at the times specified in [Table 4](#) and [Table 5](#) conforms to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Table 4. For Tablets Labeled to Contain 500 mg/Tablet

Time (h)	Amount Dissolved (%)
1	NMT 25
4	30–50
12	65–85
24	NLT 80

Table 5. For Tablets Labeled to Contain 750 and 1000 mg/Tablet

Time (h)	Amount Dissolved (%)
1	NMT 25
4	30–50
12	55–75
24	NLT 80

Test 3: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 3*.

Medium: Water; 900 mL

Apparatus 1: 100 rpm

Times: 1, 3, 6, 9, 12, and 20 h; without *Medium* replacement

[*NOTE*—Withdraw the same volume at each time point. Pass a portion of the solution through a stainless steel filter.]

Solution A: 1 mg/mL of [sodium 1-hexanesulfonate monohydrate](#) in [water](#)

Mobile phase: Mixture of *Solution A*, [methanol](#), and [glacial acetic acid](#) (840:150:10)

Standard solution: (*L*/900) mg/mL of [USP Niacin RS](#) in *Medium*, where *L* is the label claim in mg/Tablet

[*NOTE*—Use sonication for complete dissolution, if necessary.]

Sample solution: Filtered portion of the solution under test

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Sample cooler: 10°

Detector: UV 262 nm

Column: 3.9-mm × 15-cm; 10-μm packing L1

Column temperature: 40°

Flow rate: 1.5 mL/min

Injection volume: 2 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Theoretical plates: NLT 1000

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Determine the concentration, in mg/mL, of niacin ($C_6H_5NO_2$) in the *Medium* at each time point:

$$\text{Result} = (r_u/r_s) \times C_s$$

r_u = peak area of niacin from the *Sample solution*

r_s = peak area of niacin from the *Standard solution*

C_s = concentration of [USP Niacin RS](#) in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of niacin ($C_6H_5NO_2$) dissolved at each time point:

At 1 h:

$$\text{Result}_1 = (C_1 \times V/L) \times 100$$

At 3 h:

$$\text{Result}_2 = [C_2 \times (V - V_s) + C_1 \times V_s] \times 100/L$$

At 6 h:

$$\text{Result}_3 = [C_3 \times (V - 2 \times V_s) + (C_1 + C_2) \times V_s] \times 100/L$$

At 9 h:

$$\text{Result}_4 = [C_4 \times (V - 3 \times V_s) + (C_1 + C_2 + C_3) \times V_s] \times 100/L$$

At 12 h:

$$\text{Result}_5 = [C_5 \times (V - 4 \times V_s) + (C_1 + C_2 + C_3 + C_4) \times V_s] \times 100/L$$

At 20 h:

$$\text{Result}_6 = [C_6 \times (V - 5 \times V_s) + (C_1 + C_2 + C_3 + C_4 + C_5) \times V_s] \times 100/L$$

C = as C_1, C_2, \dots, C_6 , the content of niacin in the *Medium* at each time point (mg/mL)

V = volume of *Medium*, 900 mL

V_s = volume of sample withdrawn at each time point (mL)

L = label claim (mg/Tablet)

Tolerances: The percentage of the labeled amount of niacin ($C_6H_5NO_2$) dissolved at the times specified in [Table 6](#) and [Table 7](#) conforms to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Table 6. For Tablets Labeled to Contain 500 and 1000 mg/Tablet

Time (h)	Amount Dissolved (%)
1	NMT 20
3	15-35
6	30-50
9	40-65
12	50-80
20	NLT 70

Table 7. For Tablets Labeled to Contain 750 mg/Tablet

Time (h)	Amount Dissolved (%)
1	NMT 16
3	15-35
6	30-50
9	40-65
12	50-75
20	NLT 75

Test 4: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 4*.

Medium: Water; 900 mL

Apparatus 1: 100 rpm

Times: 1, 3, 6, 9, 12, and 24 h for Tablets labeled to contain 500 and 1000 mg/Tablet, and 1, 6, 12, and 24 h for Tablets labeled to contain 750 mg/Tablet; without *Medium* replacement

[**NOTE**—Withdraw the same volume at each time point. Pass a portion of the solution through a 0.45- μ m PVDF membrane filter, discarding the first 2 mL of the filtrate.]

Standard stock solution: 0.5 mg/mL of [USP Niacin RS](#) in water

Standard solution: Dilute *Standard stock solution* with *Medium* to a final concentration of 0.02 mg/mL of [USP Niacin RS](#).

Sample solution

For Tablets labeled to contain 500 mg: Dilute a filtered portion of the solution under test with *Medium* 25-fold.

For Tablets labeled to contain 750 mg: Dilute a filtered portion of the solution under test with *Medium* 40-fold.

For Tablets labeled to contain 1000 mg: Dilute a filtered portion of the solution under test with *Medium* 50-fold.

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: 262 nm

Path length: 1 cm

Blank: *Medium*

Analysis

Samples: *Standard solution* and *Sample solution*

Determine the concentration, in mg/mL, of niacin ($C_6H_5NO_2$) in the sample withdrawn from the vessel at each time point:

$$\text{Result} = [(A_U - A_B)/A_S] \times C_S \times D$$

A_U = absorbance of the *Sample solution*

A_B = absorbance of the *Blank*

A_S = absorbance of the *Standard solution*

C_S = concentration of [USP Niacin RS](#) in the *Standard solution* (mg/mL)

D = dilution factor for the *Sample solution*

For Tablets labeled to contain 500 and 1000 mg: Calculate the percentage of the labeled amount of niacin ($C_6H_5NO_2$) dissolved at each time point:

At 1 h:

$$\text{Result}_1 = (C_1 \times V/L) \times 100$$

At 3 h:

$$\text{Result}_2 = [C_2 \times (V - V_S) + C_1 \times V_S] \times 100/L$$

At 6 h:

$$\text{Result}_3 = [C_3 \times (V - 2 \times V_s) + (C_1 + C_2) \times V_s] \times 100/L$$

At 9 h:

$$\text{Result}_4 = [C_4 \times (V - 3 \times V_s) + (C_1 + C_2 + C_3) \times V_s] \times 100/L$$

At 12 h:

$$\text{Result}_5 = [C_5 \times (V - 4 \times V_s) + (C_1 + C_2 + C_3 + C_4) \times V_s] \times 100/L$$

At 24 h:

$$\text{Result}_6 = [C_6 \times (V - 5 \times V_s) + (C_1 + C_2 + C_3 + C_4 + C_5) \times V_s] \times 100/L$$

For Tablets labeled to contain 750 mg:Calculate the percentage of the labeled amount of niacin ($C_6H_5NO_2$) dissolved at each time point:

At 1 h:

$$\text{Result}_1 = (C_1 \times V/L) \times 100$$

At 6 h:

$$\text{Result}_2 = [C_2 \times (V - V_s) + C_1 \times V_s] \times 100/L$$

At 12 h:

$$\text{Result}_3 = [C_3 \times (V - 2 \times V_s) + (C_1 + C_2) \times V_s] \times 100/L$$

At 24 h:

$$\text{Result}_4 = [C_4 \times (V - 3 \times V_s) + (C_1 + C_2 + C_3) \times V_s] \times 100/L$$

 C = as C_1, C_2, \dots, C_6 , the content of niacin in the *Medium* at each time point (mg/mL) V = volume of *Medium*, 900 mL V_s = volume of sample withdrawn at each time point (mL) L = label claim (mg/Tablet)

Tolerances: The percentage of the labeled amount of niacin ($C_6H_5NO_2$) dissolved at the times specified in [Table 8](#), [Table 9](#), and [Table 10](#) conforms to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Table 8. For Tablets Labeled to Contain 500 mg/Tablet

Time (h)	Amount Dissolved (%)
1	NMT 15
3	17-32
6	33-48
9	48-68
12	60-80
24	NLT 80

Table 9. For Tablets Labeled to Contain 750 mg/Tablet

Time (h)	Amount Dissolved (%)
1	NMT 15
6	20-40
12	48-68
24	NLT 80

Table 10. For Tablets Labeled to Contain 1000 mg/Tablet

Time (h)	Amount Dissolved (%)
1	NMT 15
3	12-27
6	25-45
9	35-55
12	50-70
24	NLT 80

Test 5: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 5*.

Medium: Water; 900 mL

Apparatus 1: 100 rpm

Times: 1, 6, 12, and 24 h; without *Medium* replacement

[*NOTE*—Withdraw the same volume at each time point. Pass a portion of the solution through a 0.45- μ m nylon membrane filter, discarding the first 2 mL of the filtrate.]

Solution A: 1.1 mg/mL of [sodium 1-heptanesulfonate](#) in [water](#)

Mobile phase: Mixture of *Solution A* and [methanol](#) (70:30)

Standard solution: 0.84 mg/mL of [USP Niacin RS](#) in [water](#)

[*NOTE*—Use sonication for complete dissolution, if necessary.]

Sample solution: Filtered portion of the solution under test

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 262 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing L1

Column temperature: 30°

Flow rate: 1.0 mL/min

Injection volume: 5 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Determine the concentration, in mg/mL, of niacin ($C_6H_5NO_2$) in the *Medium* at each time point:

$$\text{Result} = (r_u/r_s) \times C_s$$

r_u = peak area of niacin from the *Sample solution*

r_s = peak area of niacin from the *Standard solution*

C_s = concentration of [USP Niacin RS](#) in the *Standard solution* (mg/mL)

Calculate the percentage of the labeled amount of niacin ($C_6H_5NO_2$) dissolved at each time point:

At 1 h:

$$\text{Result}_1 = (C_1 \times V/L) \times 100$$

At 6 h:

$$\text{Result}_2 = [C_2 \times (V - V_s) + C_1 \times V_s] \times 100/L$$

At 12 h:

$$\text{Result}_3 = [C_3 \times (V - 2 \times V_s) + (C_1 + C_2) \times V_s] \times 100/L$$

At 24 h:

$$\text{Result}_4 = [C_4 \times (V - 3 \times V_s) + (C_1 + C_2 + C_3) \times V_s] \times 100/L$$

C = as C_1, \dots, C_4 , the content of niacin in the *Medium* at each time point (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_s = volume of sample withdrawn at each time point (mL)

Tolerances: The percentage of the labeled amount of niacin ($C_6H_5NO_2$) dissolved at the times specified in [Table 11](#) and [Table 12](#) conforms to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Table 11. For Tablets Labeled to Contain 500 mg/Tablet

Time (h)	Amount Dissolved (%)
1	NMT 20
6	30–50
12	50–75
24	NLT 80

Table 12. For Tablets Labeled to Contain 1000 mg/Tablet

Time (h)	Amount Dissolved (%)
1	NMT 20
6	20–40
12	45–65
24	NLT 80

▲Test 6: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 6*.

Medium: Water; 900 mL

Apparatus 1: 100 rpm

Times: 1, 6, 12, and 24 h. Replace the volume withdrawn with the equal volume of *Medium* preheated to $37 \pm 0.5^\circ$

[**NOTE**—Withdraw the same volume at each time point. Pass a portion of the solution through a 0.45- μ m nylon or PVDF membrane filter.]

Standard stock solution: 0.44 mg/mL of [USP Niacin RS](#) in water

[**NOTE**—Use sonication for complete dissolution, if necessary.]

Standard solution: Dilute the *Standard stock solution* with *Medium* to a final concentration of 0.026 mg/mL of [USP Niacin RS](#).

Sample solution

For Tablets labeled to contain 500 mg: Dilute a filtered portion of the solution under test with dissolution medium 20-fold.

For Tablets labeled to contain 750 mg: Dilute a filtered portion of the solution under test with dissolution medium 33-fold.

For Tablets labeled to contain 1000 mg: Dilute a filtered portion of the solution under test with dissolution medium 40-fold.

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: 262 nm

Path length: 1 cm

Blank: *Medium*

Analysis

Samples: *Standard solution* and *Sample solution*

Determine the concentration, in mg/mL, of niacin ($C_6H_5NO_2$) in the sample withdrawn from the vessel at each time point:

$$\text{Result} = [(A_U - A_B)/A_S] \times C_S \times D$$

A_U = absorbance of the *Sample solution*

A_B = absorbance of the *Blank*

A_S = absorbance of the *Standard solution*

C_S = concentration of [USP Niacin RS](#) in the *Standard solution* (mg/mL)

D = dilution factor for the *Sample solution*

Calculate the percentage of the labeled amount of niacin ($C_6H_5NO_2$) dissolved at each time point:

At 1 h:

$$\text{Result}_1 = (C_1 \times V) \times 100/L$$

At 6 h:

$$\text{Result}_2 = (C_2 \times V + C_1 \times V_S) \times 100/L$$

At 12 h:

$$\text{Result}_3 = [C_3 \times V + (C_1 + C_2) \times V_S] \times 100/L$$

At 24 h:

$$\text{Result}_4 = [C_4 \times V + (C_1 + C_2 + C_3) \times V_S] \times 100/L$$

C = as C_1, \dots, C_4 , concentration of niacin in the dissolution medium at each time point (mg/mL)

V = volume of *Medium*, 900 mL

V_S = volume of the sample withdrawn from the vessel and replaced at each time point (mL)

L = label claim (mg/Tablet)

Tolerances: The percentage of the labeled amount of niacin ($C_6H_5NO_2$) dissolved at the times specified in [Table 13](#) conforms to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Table 13. For Tablets Labeled to Contain 500, 750, and 1000 mg/Tablet

Time (h)	Amount Dissolved (%)
1	NMT 20
6	25-50
12	45-75
24	NLT 80▲ (RB 1-Aug-2020)

- **UNIFORMITY OF DOSAGE UNITS (905):** Meet the requirements

IMPURITIES

Change to read:

- **ORGANIC IMPURITIES**

Diluent, Mobile phase, Standard solution, Sample solution, Chromatographic system, and System suitability: Proceed as directed in the Assay.

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of 6-hydroxynicotinic acid or pyridine in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak area of 6-hydroxynicotinic acid or pyridine from the *Sample solution*

r_S = peak area of 6-hydroxynicotinic acid or pyridine from the *Standard solution*

C_S = concentration of [USP 6-Hydroxynicotinic Acid RS](#) or pyridine in the *Standard solution* ($\mu\text{g/mL}$)

C_U = nominal concentration of niacin in the *Sample solution* ($\mu\text{g/mL}$)

Calculate the percentage of any unspecified impurity in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak area of each impurity from the *Sample solution*

r_S = peak area of niacin from the *Standard solution*

C_S = concentration of [USP Niacin RS](#) in the *Standard solution* ($\mu\text{g/mL}$)

C_U = nominal concentration of niacin in the *Sample solution* ($\mu\text{g/mL}$)

Acceptance criteria: See [Table](#)

▲14.▲ (RB 1-Aug-2020)

Table

▲14▲ (RB 1-Aug-2020)

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Pyridine	0.14	0.2
6-Hydroxynicotinic acid	0.64	0.2
Niacin	1.0	—

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Any unspecified impurity	—	0.1
Total impurities	—	1.0

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers.
- **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- **USP REFERENCE STANDARDS (11):**
 - [USP 6-Hydroxynicotinic Acid RS](#)
 - [USP Niacin RS](#)

¹ Commercially available from Waters Corporation as PIC B7 Reagent (Part #85103).

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
NIACIN EXTENDED-RELEASE TABLETS	Natalia Davydova Scientific Liaison	NBDS2020 Non-botanical Dietary Supplements
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	NBDS2020 Non-botanical Dietary Supplements

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 37(4)

Current DocID: GUID-9975432C-AF3C-4FFF-A9D9-79620B8BEE2D_7_en-US

DOI: https://doi.org/10.31003/USPNF_M56534_07_01

DOI ref: g5rns