

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Dec-2015
Document Type: NF Monographs
DocId: GUID-1C713973-F78F-4D95-9A80-B27BEE518DFA_1_en-US
DOI: https://doi.org/10.31003/USPNF_M1265_01_01
DOI Ref: h7mfg

© 2025 USPC
Do not distribute

Myristyl Alcohol

$C_{14}H_{30}O$ 214.39

n-Tetradecan-1-ol;
1-Tetradecanol;
1-Hydroxytetradecane;
1-Tetradecyl alcohol CAS RN®: 112-72-1.

DEFINITION

Myristyl Alcohol contains NLT 90.0% and NMT 102.0% of myristyl alcohol ($C_{14}H_{30}O$), the remainder consisting chiefly of related alcohols. It is obtained from sources of vegetable, animal, or synthetic origin.

IDENTIFICATION

• A. CHROMATOGRAPHIC IDENTITY

Analysis: Proceed as directed in the Assay.

Acceptance criteria: The retention time of the major peak of the *Sample solution*, excluding the solvent and internal standard peaks, corresponds to the myristyl alcohol peak of the *Standard solution*.

ASSAY

• PROCEDURE

Internal standard solution: 1 mg/mL of 1-pentadecanol (internal standard) in ethanol

System suitability solution: Prepare 1 mg/mL of [USP Cetyl Alcohol RS](#), 1 mg/mL of [USP Stearyl Alcohol RS](#), and 1 mg/mL of [USP Oleyl Alcohol RS](#) in *Internal standard solution*, and heat the solution in a sealed container in a 50° water bath until all fatty alcohols are dissolved. Allow the solution to cool to room temperature, and mix well.

Standard solution: 1.0 mg/mL of [USP Myristyl Alcohol RS](#) in *Internal standard solution*

Sample solution: 1.0 mg/mL of Myristyl Alcohol in *Internal standard solution*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: GC

Detector: Flame ionization

Column: 0.25-mm × 30-m fused-silica capillary column, coated with a 0.25-μm layer of phase G7

Temperatures

Injection port: 270°

Detector: 280°

Column: See [Table 1](#).

Table 1

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
60	20	180	—
180	10	220	5

Carrier gas: Hydrogen

Flow rate: 2.0 mL/min, constant flow mode

Injection volume: 1 μ L

Injection type: Split injection; split ratio is 100:1

Liner: Single taper, low pressure drop liner with deactivated wool

Run time: 15 min

System suitability

Samples: System suitability solution and Standard solution

[NOTE—See [Table 2](#) for the relative retention times.]

Table 2

Component	Relative Retention Time
Myristyl alcohol	0.92
1-Pentadecanol (internal standard)	1.00
Cetyl alcohol	1.08
Stearyl alcohol	1.25
Oleyl alcohol	1.27

Suitability requirements

Resolution: NLT 30 between the cetyl alcohol and stearyl alcohol peaks; NLT 2.0 between the stearyl alcohol and oleyl alcohol peaks, *System suitability solution*

Tailing factor: 0.8–1.8 for the myristyl alcohol and 1-pentadecanol peaks, *Standard solution*

Relative standard deviation: NMT 1%, using the area ratio of myristyl alcohol to 1-pentadecanol, *Standard solution*

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of myristyl alcohol ($C_{14}H_{30}O$) in the portion of Myristyl Alcohol taken:

$$\text{Result} = (R_U/R_S) \times (C_S/C_U) \times 100$$

R_U = peak response ratio of myristyl alcohol to the internal standard (peak response of myristyl alcohol/peak response of the internal standard) from the *Sample solution*

R_S = peak response ratio of myristyl alcohol to the internal standard (peak response of myristyl alcohol/peak response of the internal standard) from the *Standard solution*

C_S = concentration of [USP Myristyl Alcohol RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Myristyl Alcohol in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–102.0%

IMPURITIES

• [RESIDUE ON IGNITION \(281\)](#): NMT 0.1%, determined on 2 g

• **LIMIT OF RELATED FATTY ALCOHOLS**

Solution A: 1 mg/mL of 1-pentadecanol in ethanol

Resolution solution: Prepare 1 mg/mL of [USP Lauryl Alcohol RS](#), 1 mg/mL of [USP Myristyl Alcohol RS](#), 1 mg/mL of [USP Cetyl Alcohol RS](#), 1 mg/mL of [USP Stearyl Alcohol RS](#), and 1 mg/mL of [USP Oleyl Alcohol RS](#) in *Solution A*. Heat the solution in a sealed container in a 50° water bath until all fatty alcohols are dissolved. Allow the solution to cool to room temperature, and mix well. Dilute the solution with ethanol to obtain a solution containing 0.05 mg/mL each of [USP Lauryl Alcohol RS](#), [USP Myristyl Alcohol RS](#), [USP Cetyl Alcohol RS](#), 1-pentadecanol, [USP Stearyl Alcohol RS](#), and [USP Oleyl Alcohol RS](#).

Sample solution: 1 mg/mL of Myristyl Alcohol in ethanol

Chromatographic system: Proceed as directed in the Assay, except for the split ratio.

Injection type: Split injection; split ratio is 5:1

System suitability

Sample: Resolution solution

[NOTE—See [Table 3](#) for the relative retention times.]

Table 3

Component	Relative Retention Time
Lauryl alcohol	0.79
Myristyl alcohol	0.92
1-Pentadecanol	1.00
Cetyl alcohol	1.08
Stearyl alcohol	1.25
Oleyl alcohol	1.27

Suitability requirements

Resolution: NLT 15 between myristyl alcohol and 1-pentadecanol peaks; NLT 30 between the cetyl alcohol and stearyl alcohol peaks; NLT 2.0 between the stearyl alcohol and oleyl alcohol peaks

Analysis

Samples: Resolution solution and Sample solution

Identify each related fatty alcohol peak in the *Sample solution* based on that in the *Resolution solution*.

Calculate the percentage of each related fatty alcohol or any unspecified impurity in the portion of Myristyl Alcohol taken:

$$\text{Result} = (r_U/r_T) \times 100$$

r_U = peak response of each related fatty alcohol (or any unspecified impurity) from the *Sample solution*

r_T = sum of all the peak responses excluding peak responses due to solvent from the *Sample solution*

Acceptance criteria: Disregard peaks that are less than 0.05% for any unspecified impurities, and any peaks due to solvent.

Sum of unspecified impurities: NMT 1%

Sum of related fatty alcohols and unspecified impurities: NMT 10.0%

SPECIFIC TESTS

- [FATS AND FIXED OILS, Acid Value \(401\)](#): NMT 2
- [FATS AND FIXED OILS, Iodine Value \(401\)](#): NMT 1
- [FATS AND FIXED OILS, Hydroxyl Value \(401\)](#): 250–267
- [WATER DETERMINATION, Method I \(921\)](#): NMT 0.5%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed containers.
- **LABELING:** Label it to indicate whether it is derived from vegetable, animal, or synthetic sources.
- [USP REFERENCE STANDARDS \(11\)](#)
 - [USP Cetyl Alcohol RS](#)
 - [USP Lauryl Alcohol RS](#)
 - [USP Myristyl Alcohol RS](#)
 - [USP Oleyl Alcohol RS](#)
 - [USP Stearyl Alcohol RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
MYRISTYL ALCOHOL	Documentary Standards Support	CE2020 Complex Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	CE2020 Complex Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 40(1)

Current DocID: [GUID-1C713973-F78F-4D95-9A80-B27BEE518DFA_1_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M1265_01_01

DOI ref: [h7mfg](#)

OFFICIAL