

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-May-2018
 Document Type: USP Monographs
 DocId: GUID-FE69DFEE-9B82-4B8B-8140-2454A0BEE710_3_en-US
 DOI: https://doi.org/10.31003/USPNF_M762_03_01
 DOI Ref: zb27p

© 2025 USPC
 Do not distribute

Moxifloxacin Ophthalmic Solution

DEFINITION

Moxifloxacin Ophthalmic Solution is a sterile, self-preserved aqueous solution of Moxifloxacin Hydrochloride. It contains NLT 90.0% and NMT 110.0% of the labeled amount of moxifloxacin ($C_{21}H_{24}FN_3O_4$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- **B.** The UV absorption spectra of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Solution A: Dissolve 0.5 g of tetrabutylammonium hydrogen sulfate and 1.0 g of monobasic potassium phosphate in 1000 mL of water. Add 2 mL of phosphoric acid, filter, and degas.

Solution B: Methanol

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Flow Rate (mL/min)	Solution A (%)	Solution B (%)
0	0.5	69	31
30	0.5	69	31
31	0.9	60	40
36	0.9	60	40
37	0.5	69	31
42	0.5	69	31

System suitability solution: 0.1 mg/mL of [USP Moxifloxacin Hydrochloride RS](#) and 1 µg/mL of [USP Moxifloxacin Related Compound A RS](#) in *Solution A*

Standard stock solution: 6 mg/mL of [USP Moxifloxacin Hydrochloride RS](#) in water

Standard solution: 0.1 mg/mL of [USP Moxifloxacin Hydrochloride RS](#) in *Solution A* from the *Standard stock solution*

Sample solution: Nominally 0.1 mg/mL of moxifloxacin from Ophthalmic Solution in *Solution A*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 293 nm. For *Identification B*, use a diode array detector in the range of 200–400 nm.

Column: 4.0-mm × 25-cm; 5-µm packing L11

Column temperature: 45°

Flow rate: See [Table 1](#).

Injection volume: 25 µL

System suitability

Samples: System suitability solution and Standard solution

Suitability requirements**Resolution:** NLT 2.0 between the moxifloxacin and moxifloxacin related compound A peaks, *System suitability solution***Tailing factor:** NMT 2.0, *Standard solution***Relative standard deviation:** NMT 2.0%, *Standard solution***Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage of the labeled amount of moxifloxacin ($C_{21}H_{24}FN_3O_4$) in the portion of Ophthalmic Solution taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

 r_U = peak response of moxifloxacin from the *Sample solution* r_S = peak response of moxifloxacin from the *Standard solution* C_S = concentration of [USP Moxifloxacin Hydrochloride RS](#) in the *Standard solution* (mg/mL) C_U = nominal concentration of moxifloxacin in the *Sample solution* (mg/mL) M_{r1} = molecular weight of moxifloxacin, 401.43 M_{r2} = molecular weight of moxifloxacin hydrochloride, 437.89**Acceptance criteria:** 90.0%–110.0%**IMPURITIES****• ORGANIC IMPURITIES: EARLY-ELUTING RELATED COMPOUNDS (RELATIVE RETENTION LESS THAN 1.8)**Protect the *System suitability solution*, *Sample solution*, and *Standard solution* from light. Analyze the *Sample solution* immediately after preparation.**Solution A, Solution B, Mobile phase, System suitability solution, Standard stock solution, and Sample solution:** Prepare as directed in the Assay.**Blank solution:** Use *Solution A*.**Standard solution:** 2 µg/mL of [USP Moxifloxacin Hydrochloride RS](#) in *Solution A* from the *Standard stock solution***Sensitivity solution:** 0.05 µg/mL of [USP Moxifloxacin Hydrochloride RS](#) from the *Standard solution* in *Solution A*. Store the *Sensitivity solution* under refrigeration and protected from light.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 293 nm**Column:** 4.0-mm × 25-cm; 5-µm packing L11**Column temperature:** 45°**Flow rate:** See [Table 1](#).**Injection volume:** 25 µL**System suitability****Samples:** *System suitability solution*, *Standard solution*, and *Sensitivity solution***Suitability requirements****Resolution:** NLT 2.0 between the moxifloxacin and moxifloxacin related compound A peaks, *System suitability solution***Tailing factor:** NMT 2.0, *Standard solution***Relative standard deviation:** NMT 2.0%, *Standard solution***Signal-to-noise ratio:** NLT 10, *Sensitivity solution***Analysis****Samples:** *Blank solution*, *Standard solution*, and *Sample solution*[NOTE—Determine the relative retention values (r) for components listed in [Table 2](#), using the time measured at the first baseline deflection of the *Standard solution* chromatogram as the void volume (t_{M_1}].

Calculate the percentage of each impurity in the portion of Ophthalmic Solution taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times (1/F) \times 100$$

 r_U = peak response of each impurity from the *Sample solution*

r_s = peak response of moxifloxacin from the *Standard solution*
 C_s = concentration of [USP Moxifloxacin Hydrochloride RS](#) in the *Standard solution* (mg/mL)
 C_U = nominal concentration of moxifloxacin in the *Sample solution* (mg/mL)
 M_{r1} = molecular weight of moxifloxacin, 401.43
 M_{r2} = molecular weight of moxifloxacin hydrochloride, 437.89
 F = relative response factor (see [Table 2](#))

Acceptance criteria: See [Table 2](#).

Table 2

Name	Relative Retention (r)	Relative Response Factor	Acceptance Criteria, NMT (%)
Specified unknown impurity #1	0.3	1.0	0.2
Decarboxy moxifloxacin ^a	0.4	0.16	0.3
Specified unknown impurity #2	0.9	1.0	0.3
Moxifloxacin	1.0	—	—
Moxifloxacin related compound A ^b	1.1	—	—
8-Hydroxy ^{c,d}	1.8	—	—
Any other individual impurity	—	1.0	0.1
Any specified and identified impurity	—	1.0	1.0

^a 1-Cyclopropyl-6-fluoro-8-methoxy-7-[(4aS,7aS)-octahydro-pyrrolo[3,4-b]pyridin-6-yl]-1*H*-quinolin-4-one.

^b Disregard this peak because this is a process impurity controlled for the drug substance.

^c 1-Cyclopropyl-6-fluoro-8-hydroxy-1,4-dihydro-7-[(4aS,7aS)-octahydro-6*H*-pyrrolo[3,4-b]pyridin-6-yl]-4-oxo-3-quinolinecarboxylic acid.

^d Disregard this peak because it is quantitated using *Organic Impurities: Late-Eluting Related Compounds (Relative Retention Equal to More Than 1.8)*.

• **ORGANIC IMPURITIES: LATE-ELUTING RELATED COMPOUNDS (RELATIVE RETENTION EQUAL TO MORE THAN 1.8)**

Protect the *Standard solution* and *Sample solution* from light. Analyze the *Sample solution* immediately after preparation.

Solution A, Solution B, and Standard stock solution: Prepare as directed in the Assay.

Mobile phase: *Solution A* and *Solution B* (60:40)

Blank solution: Use *Solution A*.

Standard solution: 2 µg/mL of [USP Moxifloxacin Hydrochloride RS](#) in *Solution A* from the *Standard stock solution*

Sensitivity solution: 0.05 µg/mL of [USP Moxifloxacin Hydrochloride RS](#) from the *Standard solution* in *Solution A*. Store the *Sensitivity solution* under refrigeration and protected from light.

Sample solution: Nominally 0.1 mg/mL of moxifloxacin from Ophthalmic Solution in *Solution A*. The 8-hydroxy compound is unstable in dilute aqueous solutions.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 293 nm

Column: 4.0-mm × 25-cm; 5-μm packing L11**Column temperature:** 45°**Flow rate:** 0.9 mL/min**Injection volume:** 25 μL**Run time:** NLT 5 times the retention time of moxifloxacin peak**System suitability****Samples:** Standard solution and Sensitivity solution**Suitability requirements****Tailing factor:** NMT 2.0, Standard solution**Relative standard deviation:** NMT 2.0%, Standard solution**Signal-to-noise ratio:** NLT 10, Sensitivity solution**Analysis****Samples:** Blank solution, Standard solution, and Sample solution[NOTE—Determine the relative retention values (*r*) for components listed in [Table 3](#), using the time measured at the first baseline deflection of the Standard solution chromatogram as the void volume (*t_M*.)]

Calculate the percentage of each impurity in the portion of Ophthalmic Solution taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times (1/F) \times 100$$

 r_U = peak response of each impurity from the Sample solution r_S = peak response of moxifloxacin from the Standard solution C_S = concentration of [USP Moxifloxacin Hydrochloride RS](#) in the Standard solution (mg/mL) C_U = nominal concentration of moxifloxacin in the Sample solution (mg/mL) M_{r1} = molecular weight of moxifloxacin, 401.43 M_{r2} = molecular weight of moxifloxacin hydrochloride, 437.89 F = relative response factor (see [Table 3](#))**Acceptance criteria:** See [Table 3](#).**Table 3**

Name	Relative Retention (<i>r</i>)	Relative Response Factor	Acceptance Criteria, NMT (%)
Moxifloxacin	1.0	—	—
8-Hydroxy	1.8	0.29	0.2
Specified unknown impurity #3	3.4	1.0	0.2
Floxacin amine ^a	3.9	0.42	0.2
Any other individual impurity	—	1.0	0.1

^a 7-Amino-1-cyclopropyl-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid.**Total impurities:** NMT 1.5%, sum from both *Organic Impurities* tests**SPECIFIC TESTS**

- [STERILITY TESTS \(71\), Test for Sterility of the Product to Be Examined, Membrane Filtration](#): Meets the requirements
- [pH \(791\)](#): 6.3–7.9
- [OSMOLALITY AND OSMOLARITY \(785\)](#): 260–370 mOsmol/kg

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers. Store between 2° and 25°.

- **USP REFERENCE STANDARDS (11)**

[USP Moxifloxacin Hydrochloride RS](#)

[USP Moxifloxacin Related Compound A RS](#)

1-Cyclopropyl-6,8-difluoro-1,4-dihydro-7-[(4aS,7aS)-octahydro-6H-pyrrolo[3,4-b]pyridin-6-yl]-4-oxo-3-quinolinecarboxylic acid.

C20H21F2N3O3 389.40

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
MOXIFLOXACIN OPHTHALMIC SOLUTION	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 42(6)

Current DocID: [GUID-FE69DFEE-9B82-4B8B-8140-2454A0BEE710_3_en-US](#)

Previous DocID: [GUID-FE69DFEE-9B82-4B8B-8140-2454A0BEE710_1_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M762_03_01

DOI ref: [zb27p](#)