

Status: Currently Official on 15-Feb-2025
 Official Date: Official as of 01-Mar-2023
 Document Type: USP Monographs
 DocId: GUID-7B87953E-3EFC-4A7D-BAFC-16ED1580EC6E_5_en-US
 DOI: https://doi.org/10.31003/USPNF_M54295_05_01
 DOI Ref: n21y3

© 2025 USPC
 Do not distribute

Mirtazapine Tablets

DEFINITION

Mirtazapine Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of mirtazapine ($C_{17}H_{19}N_3$).

IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197K

Extraction mixture: *n*-Hexane and water (1:1)

Sample: Transfer an amount equivalent to 30 mg of mirtazapine from finely powdered Tablets to a suitable centrifuge tube. Add *Extraction mixture* to obtain a solution of 1 mg/mL of mirtazapine in *n*-hexane. Shake for 5 min, and centrifuge. Decant, and evaporate the supernatant.

Standard: Dissolve [USP Mirtazapine RS](#) in *Extraction mixture* to obtain a solution having a concentration of about 1 mg/mL of mirtazapine in *n*-hexane. Shake for 5 min, and centrifuge. Decant, and evaporate the supernatant.

- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

- **PROCEDURE**

Diluent: Acetonitrile and water (1:1)

Buffer: Dissolve 18.0 g of tetramethylammonium hydroxide pentahydrate in 950 mL of water. Adjust with phosphoric acid to a pH of 7.4, and dilute with water to 1 L.

Mobile phase: Acetonitrile, methanol, tetrahydrofuran, and *Buffer* (15:12.5:7.5:65)

Standard solution: 0.3 mg/mL of [USP Mirtazapine RS](#) in *Diluent*

Sample solution: Nominally 0.3 mg/mL of mirtazapine (from an amount equivalent to the weight of 1 Tablet from NLT 20 finely powdered Tablets) in *Diluent*. Shake vigorously for 10 min, centrifuge an aliquot, and use the clear supernatant.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 290 nm

Column: 4.6-mm × 25-cm; packing L1

Column temperature: 40°

Flow rate: 1.5 mL/min

Injection volume: 10 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Column efficiency: NLT 7000 theoretical plates

Tailing factor: NMT 2.0

Relative standard deviation: NMT 1.5%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of mirtazapine ($C_{17}H_{19}N_3$) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of [USP Mirtazapine RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS• **Dissolution (711)****Medium:** 0.1 N hydrochloric acid; 900 mL**Apparatus 2:** 50 rpm**Time:** 15 min**Sample solution:** Pass a portion of the solution under test through a suitable filter. Dilute with *Medium*, if necessary.**Standard solution:** [USP Mirtazapine RS](#) in *Medium* in a concentration similar to the one expected in the *Sample solution***Instrumental conditions**(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)**Mode:** UV**Analytical wavelength:** 315 nm**Analysis****Samples:** *Sample solution* and *Standard solution*Calculate the percentage of the labeled amount of mirtazapine ($C_{17}H_{19}N_3$) dissolved:

$$\text{Result} = (A_U/A_S) \times C_S \times V \times (1/L) \times 100$$

 A_U = absorbance of the *Sample solution* A_S = absorbance of the *Standard solution* C_S = concentration of [USP Mirtazapine RS](#) in the *Standard solution* (mg/mL) V = volume of the *Medium*, 900 mL L = label claim (mg/Tablet)**Tolerances:** NLT 80% (Q) of the labeled amount of mirtazapine ($C_{17}H_{19}N_3$) is dissolved.• **Uniformity of Dosage Units (905):** Meet the requirements**IMPURITIES****Change to read:**• **ORGANIC IMPURITIES****Diluent, Buffer, and Mobile phase:** Proceed as directed in the Assay.**System suitability solution:** 1.5 mg/mL of [USP Mirtazapine Resolution Mixture RS](#) in *Diluent***Standard solution:** 0.015 mg/mL of [USP Mirtazapine RS](#) in *Diluent***Sample solution:** 1.5 mg/mL of mirtazapine (from an amount equivalent to the weight of 1 Tablet from NLT 20 finely powdered Tablets) in *Diluent*. Shake vigorously for 10 min, centrifuge an aliquot, and use the clear supernatant.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 240 nm**Column:** 4.6-mm × 25-cm; packing L1**Column temperature:** 40°**Flow rate:** 1.5 mL/min**Injection volume:** 10 µL**Run time:** 2 times the retention time of mirtazapine**System suitability****Samples:** *System suitability solution* and *Standard solution*[NOTE—The relative retention times are listed in [Table 1](#).]**Suitability requirements****Resolution:** NLT 1.5 between acyclomirtazapine methyl derivative (impurity E) and ▲10-ketomirtazapine▲ (ERR 1-Mar-2023) (impurity F),

System suitability solution

Tailing factor: NMT 2.0, *Standard solution***Relative standard deviation:** NMT 10.0%, *Standard solution***Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

 r_U = peak response of any impurity from the *Sample solution*

r_s = mirtazapine peak response from the *Standard solution* C_s = concentration of [USP Mirtazapine RS](#) in the *Standard solution* (mg/mL) C_u = nominal concentration of the *Sample solution* (mg/mL) F = relative response factor for the corresponding impurity (see [Table 1](#))**Acceptance criteria:** See [Table 1](#).**Table 1**

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Mirtazapine N-oxide ^a	0.2	0.8	0.2
Acyclomirtazapine alcohol ^{b,g}	0.3	—	—
▲1-Ketomirtazapine▲ (ERR 1-Mar-2023) ^c	0.35	1.0	0.2
Desmethylmirtazapine ^{d,g}	0.4	—	—
Mirtazapine	1.0	—	—
Acyclomirtazapine methyl derivative ^{e,g}	1.3	—	—
10-Ketomirtazapine ^f	1.35	5.0	0.2
Any individual unspecified degradation product	—	1.0	0.2
Total impurities	—	—	2.0

[Note—Disregard any peak representing less than 0.05% of the main peak and any peak that is due to the *Diluent*.]^a 1,2,3,4,10,14b-Hexahydro-2-methylpyrazino[2,1-a]pyrido[2,3-c][2]benzazepine 2-oxide. (Impurity A)^b (2-(4-Methyl-2-phenylpiperazin-1-yl)pyridin-3-yl)methanol. (Impurity B)^c (2-Methyl-3,4,10,14b-tetrahydrobenzo[c]pyrazino[1,2-a]pyrido[3,2-f]azepin-1(2H)-one. (Impurity C)^d 1,2,3,4,10,14b-Hexahydropyrazino[2,1-a]pyrido[2,3-c][2]benzazepine. (Impurity D)^e 4-Methyl-1-(3-methylpyridin-2-yl)-2-phenylpiperazine. (Impurity E)^f 2-Methyl-1,2,3,4-tetrahydrobenzo[c]pyrazino[1,2-a]pyrido[3,2-f]azepin-10(14bH)-one. (Impurity F)^g Process impurity. Included for identification purposes only. Not to be included in *Total impurities*.**ADDITIONAL REQUIREMENTS**

- PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers, and store at controlled room temperature.

[USP Reference Standards \(11\)](#)[USP Mirtazapine RS](#)[USP Mirtazapine Resolution Mixture RS](#)**Mirtazapine.**

Impurity A: 1,2,3,4,10,14b-Hexahydro-2-methylpyrazino[2,1-a]pyrido[2,3-c][2]benzazepine 2-oxide.

Impurity B: (2-(4-Methyl-2-phenylpiperazin-1-yl)pyridin-3-yl)methanol.

Impurity C: (2-Methyl-3,4,10,14b-tetrahydrobenzo[c]pyrazino[1,2-a]pyrido[3,2-f]azepin-1(2H)-one.

Impurity D: [Note—This impurity may be available either as the free base form or as the hydrochloride salt form.] 1,2,3,4,10,14b-Hexahydropyrazino[2,1-a]pyrido[2,3-c][2]benzazepine or 1,2,3,4,10,14b-Hexahydropyrazino[2,1-a]pyrido[2,3-c][2]benzazepine hydrochloride.

Impurity E: 4-Methyl-1-(3-methylpyridin-2-yl)-2-phenylpiperazine.

Impurity F: 2-Methyl-1,2,3,4-tetrahydrobenzo[c]pyrazino[1,2-a]pyrido[3,2-f]azepin-10(14bH)-one.

Topic/Question	Contact	Expert Committee
MIRTAZAPINE TABLETS	Documentary Standards Support	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 37(6)

Current DocID: GUID-7B87953E-3EFC-4A7D-BAFC-16ED1580EC6E_5_en-US

DOI: https://doi.org/10.31003/USPNF_M54295_05_01

DOI ref: [n21y3](#)

OFFICIAL