

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-May-2024
Document Type: USP Monographs
DocId: GUID-EAF9B8EF-8045-4620-9881-02C74E164DA2_9_en-US
DOI: https://doi.org/10.31003/USPNF_M2417_09_01
DOI Ref: Ohugw

© 2025 USPC
Do not distribute

Minocycline Hydrochloride Extended-Release Tablets

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click

<https://www.uspnf.com/rb-minocycline-hcl-ert-20240426>.

DEFINITION

Minocycline Hydrochloride Extended-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of minocycline ($C_{23}H_{27}N_3O_7$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.
- **B.** The UV absorption spectrum of the major peak of the *Sample solution* and that of the *Standard solution* exhibit maxima and minima at the same wavelengths, as obtained in the *Assay*.

ASSAY

• PROCEDURE

Protect solutions containing minocycline from light.

Buffer: 3.5 g/L of [tetrabutylammonium hydrogen sulfate](#), 2 g/L of [anhydrous citric acid](#), and 6.8 g/L of [monobasic potassium phosphate](#).

Adjust with 10 N [sodium hydroxide](#) to a pH of 7.0.

Mobile phase: [Acetonitrile](#) and *Buffer* (24:76)

Diluent: [Acetonitrile](#) and [water](#) (20:80)

Standard solution: 0.045 mg/mL of minocycline from [USP Minocycline Hydrochloride RS](#) in *Diluent*. Store at 4° and use within 24 h.

Sample stock solution: Nominally about 0.9 mg/mL of minocycline from Tablets prepared as follows. Transfer a suitable portion of finely powdered Tablets (NLT 10) to a suitable volumetric flask. Add [acetonitrile](#), using 20% of the final volume, and mix vigorously for 15 min. Add [water](#), using 65% of the final volume, and mix vigorously for 30 min. Dilute with [water](#) to volume and mix.

Sample solution: Nominally 0.045 mg/mL of minocycline from *Sample stock solution* in *Diluent*. Centrifuge and use the clear supernatant.

Store at 4° and use within 24 h.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 277 nm. When this procedure is used for *Identification test B*, use a diode array detector set at 200–400 nm.

Column: 4.6-mm × 15-cm; 5-μm packing [L1](#)

Temperatures

Column: 35°

Autosampler: 4°

Flow rate: 1.3 mL/min

Injection volume: 10 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 1.5

Relative standard deviation: NMT 1.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of minocycline ($C_{23}H_{27}N_3O_7$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times P \times F \times 100$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_S = concentration of [USP Minocycline Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of minocycline in the *Sample solution* (mg/mL)

P = potency of minocycline in [USP Minocycline Hydrochloride RS](#) ($\mu\text{g}/\text{mg}$)

F = conversion factor, 0.001 $\text{mg}/\mu\text{g}$

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

Change to read:

- [Dissolution \(711\)](#)

Test 1: Protect solutions containing minocycline from light.

Medium: pH 6.8 phosphate buffer (see [Reagents and Reference Tables, Solutions, Buffer Solutions](#)); 900 mL

Apparatus 2: 50 rpm

Times: 1, 2, and 5 h

Standard stock solution: 0.5 mg/mL of minocycline from [USP Minocycline Hydrochloride RS](#) in Medium

Standard solution: ($L/900$) mg/mL of minocycline from Standard stock solution in Medium, where L is the label claim of minocycline in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter.

Instrumental conditions

Mode: UV

Analytical wavelength: 348 nm

Cell: See [Table 1](#).

Table 1

Tablet Strength (mg)	Cell Path Length (cm)
45	0.5
90	0.2
135	0.2

Blank: Medium

Analysis

Samples: Standard solution, Sample solution, and Blank

Autozero the instrument using the Blank.

Calculate the concentration (C_i) of minocycline ($\text{C}_{23}\text{H}_{27}\text{N}_3\text{O}_7$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result} = (A_u/A_s) \times C_s \times P \times F$$

A_u = absorbance of the Sample solution at time point i

A_s = absorbance of the Standard solution

C_s = concentration of the Standard solution (mg/mL)

P = potency of minocycline in [USP Minocycline Hydrochloride RS](#) ($\mu\text{g}/\text{mg}$)

F = conversion factor, 0.001 $\text{mg}/\mu\text{g}$

Calculate the percentage of the labeled amount (Q) of minocycline ($\text{C}_{23}\text{H}_{27}\text{N}_3\text{O}_7$) dissolved at each time point (i):

$$\text{Result}_1 = C_i \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_s)] + (C_1 \times V_s)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times [V - (2 \times V_s)]) + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

C_i = concentration of minocycline in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

V_s = volume of the Sample solution withdrawn at each time point (mL)

Tolerances: See [Table 2](#).**Table 2**

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	20–45
2	2	40–70
3	5	NLT 85

The percentages of the labeled amounts of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at the times specified conform to [Dissolution \(711\)](#).

[Acceptance Table 2](#).

Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*.

Protect solutions containing minocycline from light.

Medium: 0.1 N [hydrochloric acid](#); 900 mL

Apparatus 1: 100 rpm

Times: 1, 2, and 4 h

Standard solution: 0.0225 mg/mL of minocycline from [USP Minocycline Hydrochloride RS](#) in *Medium*

Sample solution: At the times specified, withdraw 10 mL of the solution under test and replace with 10 mL of *Medium*. Pass through a suitable filter. Dilute with *Medium* to a concentration that is similar to that of the *Standard solution*.

Instrumental conditions

Mode: UV

Analytical wavelength: 348 nm

Cell: 1 cm

Blank: *Medium*

Analysis

Samples: *Standard solution* and *Sample solution*

Autozero the instrument using the *Blank*.

Calculate the concentration (C_i) of minocycline ($C_{23}H_{27}N_3O_7$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result} = (A_U/A_S) \times C_S \times D \times P \times F$$

A_U = absorbance of the *Sample solution* at time point i

A_S = absorbance of the *Standard solution*

C_S = concentration of the *Standard solution* (mg/mL)

D = dilution factor (mL/mL)

P = potency of minocycline in [USP Minocycline Hydrochloride RS](#) (μg/mg)

F = conversion factor, 0.001 mg/μg

Calculate the percentage of the labeled amount (Q_i) of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of minocycline in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_S = volume of the *Sample solution* withdrawn at each time point and replaced with *Medium* (mL)

Tolerances: See [Table 3](#).

Table 3

Time Point (i)	Time (h)	Amount Dissolved (%)	
		45 mg/Tablet	90 mg/Tablet and 135 mg/Tablet
1	1	40-60	40-60
2	2	70-95	70-90
3	4	NLT 85	NLT 85

The percentages of the labeled amounts of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at the times specified conform to [Dissolution \(711\)](#).

[Acceptance Table 2](#).

Test 3: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 3*.

Protect solutions containing minocycline from light.

Medium: 0.1 N [hydrochloric acid](#); 900 mL

Apparatus 1: 100 rpm

Times: 0.5, 1.5, and 4 h

Standard solution: 0.021 mg/mL of minocycline from [USP Minocycline Hydrochloride RS](#) in *Medium*

Sample solution: At the times specified, withdraw 10 mL of the solution under test and replace with 10 mL of *Medium*. Pass through a suitable filter. Dilute with *Medium* to a concentration that is similar to that of the *Standard solution*.

Instrumental conditions

Mode: UV

Analytical wavelength: 265 nm

Cell: 1 cm

Blank: *Medium*

Analysis

Samples: *Standard solution* and *Sample solution*

Autozero the instrument using the *Blank*.

Calculate the concentration (C_i) of minocycline ($C_{23}H_{27}N_3O_7$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result} = (A_U/A_S) \times C_S \times D \times P \times F$$

A_U = absorbance of the *Sample solution* at time point i

A_S = absorbance of the *Standard solution*

C_S = concentration of the *Standard solution* (mg/mL)

D = dilution factor (mL/mL)

P = potency of minocycline in [USP Minocycline Hydrochloride RS](#) (μg/mg)

F = conversion factor, 0.001 mg/μg

Calculate the percentage of the labeled amount (Q_i) of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at each time point (i):

$$\text{Result}_1 = C_i \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of minocycline in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_S = volume of the *Sample solution* withdrawn at each time point and replaced with *Medium* (mL)

Tolerances: See [Table 4](#).

Table 4

Time Point (i)	Time (h)	Amount Dissolved (%)
1	0.5	NMT 40
2	1.5	50–95
3	4	NLT 85

The percentages of the labeled amounts of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at the times specified conform to [Dissolution \(711\)](#),

[Acceptance Table 2](#).

Test 4: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 4*.

Protect solutions containing minocycline from light.

Medium: 0.1 N [hydrochloric acid](#); 900 mL

Apparatus 1: 100 rpm

Times: 1, 2, and 4 h

Standard solution: ($L/900$) mg/mL of minocycline from [USP Minocycline Hydrochloride RS](#) in *Medium*, where L is the label claim of minocycline in mg/Tablet

Sample solution: At the times specified, withdraw 5 mL of the solution under test and replace with 5 mL of *Medium*. Pass through a suitable filter. Dilute with *Medium* to a concentration that is similar to that of the *Standard solution*.

Instrumental conditions

Mode: UV

Analytical wavelength: 353 nm

Cell: 1 cm

Blank: *Medium*

Analysis

Samples: *Standard solution* and *Sample solution*

Autozero the instrument using the *Blank*.

Calculate the concentration (C_i) of minocycline ($C_{23}H_{27}N_3O_7$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result} = (A_U/A_S) \times C_S \times D \times P \times F$$

A_U = absorbance of the *Sample solution* at time point i

A_S = absorbance of the *Standard solution*

C_S = concentration of the *Standard solution* (mg/mL)

D = dilution factor (mL/mL)

P = potency of minocycline in [USP Minocycline Hydrochloride RS](#) (μg/mg)

F = conversion factor, 0.001 mg/μg

Calculate the percentage of the labeled amount (Q_i) of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of minocycline in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_S = volume of the *Sample solution* withdrawn at each time point and replaced with *Medium* (mL)

Tolerances: See [Table 5](#).

Table 5

Time Point (i)	Time (h)	Amount Dissolved (%)	
		45/Tablet and 90 mg/Tablet	135 mg/Tablet
1	1	35-50	35-50
2	2	63-78	67-82
3	4	NLT 90	NLT 90

The percentages of the labeled amounts of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at the times specified conform to [Dissolution \(711\)](#).

[Acceptance Table 2](#).

Test 5: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 5*.

Protect solutions containing minocycline from light.

Medium: 0.1 N [hydrochloric acid](#); 900 mL

Apparatus 1: 40 mesh, 100 rpm

Times: 0.5, 1.5, and 4 h

Standard stock solution: 0.22 mg/mL of minocycline from [USP Minocycline Hydrochloride RS](#) prepared as follows. Transfer a suitable amount of [USP Minocycline Hydrochloride RS](#) to a suitable volumetric flask, and dissolve with 10% of the flask volume of *Medium*. Dilute with [water](#) to volume.

Standard solution: 0.022 mg/mL of minocycline in *Medium* from the *Standard stock solution*

Sample solution: At the times specified, withdraw 10 mL of the solution under test and replace with 10 mL of *Medium*. Pass through a suitable filter and discard the first 5 mL. Dilute with *Medium* to a concentration that is similar to that of the *Standard solution*.

Instrumental conditions and Analysis: Proceed as directed in *Test 4*.

Tolerances: See [Table 6](#).

Table 6

Time Point (i)	Time (h)	Amount Dissolved (%)			
		45, 55, 115, and 135 mg/Tablet	65 and 80 mg/Tablet	90 mg/Tablet	105 mg/Tablet
1	0.5	15-40	15-40	15-40	15-40
2	1.5	50-75	55-75	50-70	60-80
3	4	NLT 85	NLT 85	NLT 85	NLT 85

The percentages of the labeled amount of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at the times specified conform to [Dissolution \(711\)](#).

[Acceptance Table 2](#).

Test 6: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 6*.

Protect solutions containing minocycline from light.

Medium: 0.1 N [hydrochloric acid](#); 900 mL

Apparatus 1: 100 rpm

Times: 1, 2, and 4 h

Mobile phase: [Dimethylformamide](#), [tetrahydrofuran](#), 0.2 M [ammonium oxalate](#) solution, and 0.01 M [edetate disodium](#) solution (120:80:600:180). Adjust with [ammonium hydroxide](#) to a pH of 7.2.

Standard stock solution: 0.55 mg/mL of minocycline from [USP Minocycline Hydrochloride RS](#) prepared as follows. Transfer a suitable amount of [USP Minocycline Hydrochloride RS](#) to a suitable volumetric flask, and dissolve with 70% of the flask volume of *Medium* and sonicate for 5 min. Dilute with *Medium* to volume.

Standard solution: ($L/900$) mg/mL of minocycline from *Standard stock solution* in *Medium*, where L is the label claim of minocycline in mg/Tablet

Sample solution: At the times specified, withdraw 10 mL of the solution under test and replace with 10 mL of *Medium*. Pass through a suitable filter and dilute with *Medium* to a concentration that is similar to that of the *Standard solution*.

Chromatographic system

(See [Chromatography \(621\)](#), [System Suitability](#).)

Mode: LC

Detector: UV 280 nm

Column: 4.6-mm × 15-cm; 5-μm packing [L1](#)

Temperatures**Column:** 40°**Autosampler:** 10°**Flow rate:** 1.5 mL/min**Injection volume:** 50 µL**Run time:** NLT 1.5 times the retention time of minocycline**System suitability****Sample:** Standard solution**Suitability requirements****Relative standard deviation:** NMT 2.0%**Analysis****Samples:** Standard solution and Sample solutionCalculate the concentration (C_i) of minocycline ($C_{23}H_{27}N_3O_7$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result} = (r_u/r_s) \times C_s \times P \times F$$

 r_u = peak response of minocycline from the Sample solution at time point i r_s = peak response of minocycline from the Standard solution C_s = concentration of the Standard solution (mg/mL) P = potency of minocycline in [USP Minocycline Hydrochloride RS](#) (µg/mg) F = conversion factor, 0.001 mg/µgCalculate the percentage of the labeled amount (Q_i) of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_s)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

 C_i = concentration of minocycline in the portion of sample withdrawn at the specified time point (mg/mL) V = volume of Medium, 900 mL L = label claim (mg/Tablet) V_s = volume of the Sample solution withdrawn at each time point and replaced with Medium (mL)**Tolerances:** See [Table 7](#).**Table 7**

Time Point (i)	Time (h)	Amount Dissolved (%)				
		45 mg/Tablet	65, 90, and 115 mg/Tablet	80 mg/Tablet	105 mg/Tablet	135 mg/Tablet
1	1	40–60	40–60	40–60	40–60	30–50
2	2	75–95	70–95	75–95	70–85	60–80
3	4	NLT 80	NLT 85	NLT 85	NLT 85	NLT 80

The percentages of the labeled amount of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at the times specified conform to [Dissolution \(711\)](#).[Acceptance Table 2](#).**Test 7:** If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 7.

Protect solutions containing minocycline from light.

Medium: 0.1 N [hydrochloric acid](#); 900 mL**Apparatus 1:** 100 rpm**Times:** 1, 2, and 4 h**Standard solution:** 0.015 mg/mL of minocycline from [USP Minocycline Hydrochloride RS](#) in Medium. Sonicate to dissolve if necessary.

Sample solution: At the times specified, withdraw 15 mL of the solution under test and replace with 15 mL of *Medium*. Pass through a suitable filter of 0.45- μ m pore size. Dilute with *Medium* to a concentration that is similar to that of the *Standard solution*.

Instrumental conditions

Mode: UV

Analytical wavelength: 348 nm

Blank: *Medium*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration (C_i) of minocycline ($C_{23}H_{27}N_3O_7$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result} = (A_U/A_S) \times C_S \times D \times P \times F$$

A_U = absorbance of minocycline from the *Sample solution* at time point i

A_S = absorbance of minocycline from the *Standard solution*

C_S = concentration of [USP Minocycline Hydrochloride RS](#) from the *Standard solution* (mg/mL)

D = dilution factor for the *Sample solution*

P = potency of minocycline in [USP Minocycline Hydrochloride RS](#) (μ g/mg)

F = conversion factor, 0.001 mg/ μ g

Calculate the percentage of the labeled amount of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of minocycline in the portion of sample withdrawn at time point i (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_S = volume of the *Sample solution* withdrawn at each time point and replaced with *Medium* (mL)

Tolerances: See [Table 8](#).

Table 8

Time Point (i)	Time (h)	Amount Dissolved (%)			
		45 and 55 mg/Tablet	80 mg/Tablet	65 and 105 mg/Tablet	115 and 135 mg/Tablet
1	1	30–55	25–50	30–65	50–80
2	2	55–75	60–90	NLT 85	NLT 85
3	4	NLT 85	NLT 85	NLT 85	NLT 85

The percentages of the labeled amounts of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at the times specified conform to [Dissolution \(711\)](#),

[Acceptance Table 2](#).

Test 8: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 8*.

Protect solutions containing minocycline from light.

Medium: 0.1 N [hydrochloric acid](#); 900 mL

Apparatus 1: 100 rpm

Times: 0.5, 1.5, and 4 h

Mobile phase: [Dimethylformamide](#), [tetrahydrofuran](#), 0.2 M [ammonium oxalate](#) solution, and 0.01 M [edetate disodium](#) solution (120:80:600:180). Adjust with [ammonia TS](#) to a pH of 7.0.

Standard solution: ($L/900$) mg/mL of minocycline from [USP Minocycline Hydrochloride RS](#) in *Medium*, where L is the label claim of minocycline in mg/Tablet. ▲Store the *Standard solution* in a refrigerator. ▲(RB 1-May-2024)

Sample solution: At the times specified, withdraw 10 mL of the solution under test and replace with 10 mL of *Medium*. Pass through a suitable filter. ▲Store the *Sample solution* in a refrigerator.▲ (RB 1-May-2024)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 348 nm

Column: 4.6-mm × 15-cm; 5-μm packing [L1](#)

Temperatures

Autosampler: 5°

Column: 40°

Flow rate: 1.5 mL/min

Injection volume: 10 μL

Run time: NLT 1.6 times the retention time of minocycline

System suitability

Sample: Standard solution

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of minocycline ($C_{23}H_{27}N_3O_7$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result} = (r_U/r_S) \times C_S \times P \times F$$

r_U = peak response of minocycline from the *Sample solution* at time point i

r_S = peak response of minocycline from the *Standard solution*

C_S = concentration of the *Standard solution* (mg/mL)

P = potency of minocycline in [USP Minocycline Hydrochloride RS](#) (μg/mg)

F = conversion factor, 0.001 mg/μg

Calculate the percentage of the labeled amount of minocycline ($C_{23}H_{27}N_3O_7$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of minocycline in the portion of sample withdrawn at the specified time point (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_S = volume of the *Sample solution* withdrawn at each time point (mL)

Tolerances: See [Table 9](#).

Table 9

Time Point (i)	Time (h)	Amount Dissolved (%)	
		45▲, 55, and 65▲ (RB 1-May-2024) mg/Tablet	80, 90, 105, ▲115,▲ (RB 1-May-2024) and 135 mg/Tablet
1	0.5	20–35	17–32
2	1.5	44–64	39–59
3	4	NLT 80	NLT 80

Acceptance Table 2.

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meet the requirements

IMPURITIES• **ORGANIC IMPURITIES**

Protect solutions containing minocycline from light.

Buffer, Mobile phase, and Diluent: Prepare as directed in the Assay.

Standard stock solution: Use the *Standard solution* as directed in the Assay.

Standard solution: 0.009 mg/mL of minocycline from *Standard stock solution* in *Diluent*. Store at 4° and use within 24 h.

Sample solution: Use the *Sample stock solution* as directed in the Assay.

Sensitivity solution: 0.9 μ g/mL of minocycline from *Standard solution* in *Diluent*. Store at 4° and use within 24 h.

System suitability solution: Heat a portion of the *Standard stock solution* at 60° for about 2 h and cool. This solution contains a mixture of 4-epiminocycline and minocycline. Store at 4° and use within 24 h.

Chromatographic system: Proceed as directed in the Assay, except use a flow rate of 1 mL/min.

System suitability

Samples: *Standard solution*, *Sensitivity solution*, and *System suitability solution*

Suitability requirements

Resolution: NLT 4.6 between minocycline and 4-epiminocycline, *System suitability solution*

Tailing factor: NMT 1.5, *Standard solution*

Relative standard deviation: NMT 2.0%, *Standard solution*

Signal-to-noise ratio: NLT 10, *Sensitivity solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times P \times F \times 100$$

r_u = peak response of each impurity from the *Sample solution*

r_s = peak response of minocycline from the *Standard solution*

C_s = concentration of [USP Minocycline Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of minocycline in the *Sample solution* (mg/mL)

P = potency of minocycline in [USP Minocycline Hydrochloride RS](#) (μ g/mg)

F = conversion factor, 0.001 mg/ μ g

Acceptance criteria: See [Table 10](#). The reporting threshold is 0.1%.

Table 10

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
4-Epiminocycline ^a	0.38	4.0
Desmethyl minocycline ^{b,c}	0.46	—
Sencycline ^{b,d}	0.68	—
5a,6-Anhydrominocycline ^{b,e}	0.81	—
Hydroxymethylminocycline ^{b,f}	0.92	—
Minocycline	1.0	—
Any individual unspecified degradation product	—	0.2
Total degradation products ^g	—	2.0

^a (4R,4aS,5aR,12aS)-4,7-Bis(dimethylamino)-3,10,12,12a-tetrahydroxy-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide.

^b Process impurities are controlled in the drug substance and are not to be reported here. They are not included in total degradation products.

^c (4S,4aS,5aR,12aS)-4-Dimethylamino-3,10,12,12a-tetrahydroxy-7-methylamino-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide.

^d 6-Demethyl-6-deoxytetracycline; (4S,4aS,5aR,12aS)-4-Dimethylamino-3,10,12,12a-tetrahydroxy-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide.

^e (4S,4aS,12aS)-4,7-Bis(dimethylamino)-3,10,11,12a-tetrahydroxy-1,12-dioxo-1,4,4a,5,12,12a-hexahydrotetracene-2-carboxamide.

^f (4S,4aS,5aR,12aS)-4,7-Bis(dimethylamino)-3,10,12,12a-tetrahydroxy-N-(hydroxymethyl)-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide.

^g Total degradation products does not include 4-epiminocycline.

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE:** Store in tightly closed containers at controlled room temperature.
- LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- USP REFERENCE STANDARDS (11).**
[USP Minocycline Hydrochloride RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
MINOCYCLINE HYDROCHLORIDE EXTENDED-RELEASE TABLETS	Documentary Standards Support	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 40(3)

Current DocID: GUID-EAF9B8EF-8045-4620-9881-02C74E164DA2_9_en-US

DOI: https://doi.org/10.31003/USPNF_M2417_09_01

DOI ref: [0hugw](#)