

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-Dec-2023
Document Type: USP Monographs
DocId: GUID-0893D017-21E9-4D1E-963D-8CE50EF8B4C6_4_en-US
DOI: https://doi.org/10.31003/USPNF_M54049_04_01
DOI Ref: 560t2

© 2025 USPC
Do not distribute

Midodrine Hydrochloride Tablets

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click www.uspnf.com/rb-midodrine-hcl-tabs-20231117.

DEFINITION

Midodrine Hydrochloride Tablets contain NLT 90.0% and NMT 105.0% of the labeled amount of Midodrine Hydrochloride ($C_{12}H_{18}N_2O_4 \cdot HCl$).

IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#) 197K

Sample specimen: Weigh a quantity, from finely powdered Tablets (NLT 20), equivalent to 15 mg of midodrine hydrochloride, into a 50-mL disposable centrifuge tube. Add 20 mL of [water](#), and stir for 2 min using a vortex mixer. Pass the mixture through filter paper into a 50-mL beaker, and boil it until about 2 mL of the solution is left. Evaporate the final solution in an oven at 105° for 1 h.

- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

- PROCEDURE

Buffer: 13.6 g/L of [monobasic potassium phosphate](#). Adjust with [phosphoric acid](#) to a pH of 4.00 ± 0.05.

Mobile phase: [Acetonitrile](#) and **Buffer** (3:22)

Standard solution: 0.05 mg/mL of [USP Midodrine Hydrochloride RS](#) in *Mobile phase*

Sample solution: 0.05 mg/mL of midodrine hydrochloride in *Mobile phase* from NLT 5 Tablets (for 10-mg Tablet strength) or NLT 10 Tablets (for 5-mg and 2.5-mg Tablet strength). Initially add *Mobile phase* up to 80% of the volume of the flask. Sonicate for 10 min, stir for 15 min, and then dilute to volume, mix, and let stand for 10 min. Pass through a suitable PVDF filter of 0.45-μm pore size, and discard the first 5 mL.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 290 nm

Column: 4.6-mm × 15-cm; 5-μm packing [L1](#)

Flow rate: 1.0 mL/min

Injection size: 20 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Column efficiency: NLT 3000 theoretical plates

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of midodrine hydrochloride ($C_{12}H_{18}N_2O_4 \cdot HCl$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_S = concentration of the *Standard solution* (mg/mL)

C_U = nominal concentration of the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–105.0%

PERFORMANCE TESTS

Change to read:

- [DISSOLUTION \(711\)](#)

▲Test 1 ▲ (RB 1-Dec-2023)**Medium:** 0.1 N [hydrochloric acid](#); 900 mL, deaerated**Apparatus 2:** 50 rpm**Time:** 15 min**Buffer:** Proceed as directed in the Assay.**Mobile phase:** [Acetonitrile](#) and **Buffer** (3:17)**Standard solution:** L/900 mg/mL of [USP Midodrine Hydrochloride RS](#) in **Medium**, where L is the label claim in mg/Tablet**Sample solution:** Pass a portion of the solution under test through a suitable filter of 45- μ m pore size.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 290 nm**Column:** 4.6-mm \times 15-cm; 5- μ m packing [L1](#)**Flow rate:** 1.0 mL/min**Injection size:** 50 μ L**System suitability****Sample:** *Standard solution***Suitability requirements****Column efficiency:** NLT 2000 theoretical plates**Tailing factor:** NMT 2.0**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of midodrine hydrochloride dissolved:

$$\text{Result} = (r_u/r_s) \times (C_s/L) \times V \times 100$$

 r_u = peak area from the *Sample solution* r_s = peak area from the *Standard solution* C_s = concentration of the *Standard solution* (mg/mL) L = label claim (mg/Tablet) V = volume of *Medium*, 900 mL**Tolerances:** NLT 80% (Q) of the labeled amount of midodrine hydrochloride is dissolved.**▲Test 2:** If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*.**Medium:** 0.1 N [hydrochloric acid](#); 500 mL**Apparatus 2:** 50 rpm**Time:** 15 min**Buffer:** Dissolve 13.6 g of [monobasic potassium phosphate](#) in 1000 mL of [water](#). Adjust with 50% (v/v) of [phosphoric acid](#) in [water](#) to a pH of 4.0.**Mobile phase:** [Acetonitrile](#) and **Buffer** (15:85)**Standard solution:** (L/500) mg/mL of [USP Midodrine Hydrochloride RS](#) in **Medium**, where L is the label claim in mg/Tablet. Sonicate to dissolve if necessary.**Sample solution:** Pass a portion of the solution under test through a suitable filter.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 290 nm**Column:** 4.6-mm \times 15-cm; 5- μ m packing [L1](#)**Flow rate:** 1 mL/min**Injection volume:** 50 μ L**Run time:** NLT 2.1 times the retention time of midodrine**System suitability****Sample:** *Standard solution***Suitability requirements****Tailing factor:** NMT 2.0**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of midodrine hydrochloride ($C_{12}H_{18}N_2O_4 \cdot HCl$) dissolved:

$$\text{Result} = (r_u/r_s) \times C_s \times V \times (1/L) \times 100$$

 r_u = peak response of midodrine from the *Sample solution* r_s = peak response of midodrine from the *Standard solution* C_s = concentration of [USP Midodrine Hydrochloride RS](#) in the *Standard solution* (mg/mL) V = volume of *Medium*, 500 mL L = label claim (mg/Tablet)**Tolerances:** NLT 80% (Q) of the labeled amount of midodrine hydrochloride ($C_{12}H_{18}N_2O_4 \cdot HCl$) is dissolved. ▲ (RB 1-Dec-2023)

- [Uniformity of Dosage Units \(905\)](#): Meet the requirements

IMPURITIES

ORGANIC IMPURITIES

- **PROCEDURE**

Buffer and Mobile phase: Proceed as directed in the Assay.**Standard stock solution 1:** 25 µg/mL of [USP Midodrine Hydrochloride RS](#) in *Mobile phase***Standard stock solution 2:** 25 µg/mL of [USP Midodrine Related Compound A RS](#) in *Mobile phase***Standard solution:** 1.25 µg/mL each of [USP Midodrine Hydrochloride RS](#) and [USP Midodrine Related Compound A RS](#) in *Mobile phase* from *Standard stock solution 1* and *Standard stock solution 2***Sample solution:** 0.25 mg/mL in *Mobile phase* from NLT 5 Tablets (for 10-mg Tablet strength) and NLT 10 Tablets (for 5-mg and 2.5-mg Tablet strength). Initially add *Mobile phase* to about 80% of the volume of the flask. Sonicate for 10 min, stir for 15 min, and then dilute to volume. Pass through a suitable PVDF filter of 0.45-µm pore size, and discard the first 5 mL.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)

Proceed as directed in the Assay except for the following:

Injection volume: 40 µL**System suitability****Sample:** *Standard solution***Suitability requirements**

[NOTE—The relative retention times for midodrine related compound A and midodrine hydrochloride are 0.83 and 1, respectively.]

Resolution: NLT 2.0 between midodrine hydrochloride and midodrine related compound A**Column efficiency:** NLT 2000 theoretical plates for the midodrine peak**Tailing factor:** NMT 2.0 for the midodrine peak**Relative standard deviation:** NMT 2.0% for the midodrine peak**Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of midodrine related compound A in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak response of midodrine related compound A from the *Sample solution* r_s = peak response of midodrine related compound A from the *Standard solution* C_s = concentration of [USP Midodrine Related Compound A RS](#) in the *Standard solution* (µg/mL) C_u = nominal concentration of midodrine hydrochloride in the *Sample solution* (µg/mL)

Calculate the percentage of any other unknown impurity in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak response of any other unknown impurity from the *Sample solution* r_s = peak response of midodrine from the *Standard solution* C_s = concentration of [USP Midodrine Hydrochloride RS](#) in the *Standard solution* (µg/mL) C_u = nominal concentration of midodrine hydrochloride in the *Sample solution* (µg/mL)**Acceptance criteria**

Individual impurities: NMT 0.5% of midodrine related compound A; NMT 0.2% of any other individual impurity

Total impurities: NMT 1.0%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed containers.

Add the following:

▲ • **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.▲ (RB 1-Dec-2023)

Change to read:

- [USP REFERENCE STANDARDS \(11\)](#)

[USP Midodrine Hydrochloride RS](#)

[USP Midodrine Related Compound A RS](#)

▲ 2-Amino-1-(2,5 Dimethoxyphenyl)ethanol.▲ (CN 1-Dec-2023)

C10H15NO3 197.23

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
MIDODRINE HYDROCHLORIDE TABLETS	Documentary Standards Support	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 36(2)

Current DocID: GUID-0893D017-21E9-4D1E-963D-8CE50EF8B4C6_4_en-US

DOI: https://doi.org/10.31003/USPNF_M54049_04_01

DOI ref: [560t2](#)