

Status: Currently Official on 15-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-37709C8A-2523-4776-BA77-C09F15826F20_5_en-US
 DOI: https://doi.org/10.31003/USPNF_M53870_05_01
 DOI Ref: hh6q3

© 2025 USPC
 Do not distribute

Mexiletine Hydrochloride

Change to read:

$C_{11}H_{17}NO \cdot HCl$ 215.72
 2-Propanamine, 1-(2,6-dimethylphenoxy)-, hydrochloride, (\pm)-;
 (\pm)-1-Methyl-2-(2,6-xylyloxy)ethylamine hydrochloride CAS RN[®]: ▲5370-01-4.▲ (ERR 1-May-2020)

DEFINITION

Mexiletine Hydrochloride contains NLT 98.0% and NMT 102.0% of mexiletine hydrochloride ($C_{11}H_{17}NO \cdot HCl$), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. ▲[SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197M](#)▲ (CN 1-May-2020)
- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- C.

Sample solution: 3 mL of a solution (1 in 60)

Analysis: Add 1 mL of 6 N ammonium hydroxide to the *Sample solution*, filter, and acidify the filtrate with 2 mL of nitric acid. Then add 1 mL of silver nitrate TS.

Acceptance criteria: A curdy, white precipitate is formed, and it is soluble in an excess of 6 N ammonium hydroxide (presence of chloride).

ASSAY

• PROCEDURE

Buffer: Dissolve 11.5 g of anhydrous sodium acetate in 500 mL of water. Add 3.2 mL of glacial acetic acid, mix, and allow to cool. Adjust with hydrochloric acid to a pH of 4.8 ± 0.1 , and dilute with water to 1000 mL.

Mobile phase: Methanol and *Buffer* (600:400)

Standard solution: 2 mg/mL of [USP Mexiletine Hydrochloride RS](#) in *Mobile phase*

System suitability solution: 1 mg/mL of 2-phenylethylamine hydrochloride in *Standard solution*

Sample solution: 2 mg/mL of Mexiletine Hydrochloride in *Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Columns

Guard: Packing L1

Analytical: 3.9-mm \times 30-cm; 10- μ m packing L1

Flow rate: 1 mL/min

Injection volume: 20 μ L

System suitability

Samples: *Standard solution* and *System suitability solution*

[NOTE—The relative retention times for 2-phenylethylamine and mexiletine are 0.7 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 3.0 between the 2-phenylethylamine and mexiletine peaks, *System suitability solution*

Relative standard deviation: NMT 2.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of mexiletine hydrochloride ($C_{11}H_{17}NO \cdot HCl$) in the portion of Mexiletine Hydrochloride taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak area of mexiletine from the *Sample solution*

r_s = peak area of mexiletine from the *Standard solution*

C_s = concentration of [USP Mexiletine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Mexiletine Hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: 98.0%–102.0% on the dried basis

IMPURITIES

• [RESIDUE ON IGNITION \(281\)](#): NMT 0.1%

• [ORGANIC IMPURITIES](#)

Mobile phase, System suitability solution, and Chromatographic system: Proceed as directed in the Assay.

Standard solution: 0.2 mg/mL of [USP Mexiletine Hydrochloride RS](#) in *Mobile phase*, from the *Standard solution* in the Assay

Sample solution: 20 mg/mL of Mexiletine Hydrochloride in *Mobile phase*

System suitability

Samples: *System suitability solution* and *Standard solution*

[NOTE—The relative retention times for 2-phenylethylamine and mexiletine are 0.7 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 3.0 between the 2-phenylethylamine and mexiletine peaks, *System suitability solution*

Relative standard deviation: NMT 3.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Mexiletine Hydrochloride taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak area of each impurity from the *Sample solution*

r_s = peak area of mexiletine from the *Standard solution*

C_s = concentration of [USP Mexiletine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Mexiletine Hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria

Any individual impurity: NMT 1%

Total impurities: NMT 1.5%

SPECIFIC TESTS

• [pH \(791\)](#)

Sample solution: 100 mg/mL

Acceptance criteria: 3.5–5.5

• [LOSS ON DRYING \(731\)](#)

Analysis: Dry at 105° for 2 h.

Acceptance criteria: NMT 0.5%

ADDITIONAL REQUIREMENTS

• [PACKAGING AND STORAGE:](#) Preserve in tight containers.

• [USP REFERENCE STANDARDS \(11\)](#)

[USP Mexiletine Hydrochloride RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
MEXILETINE HYDROCHLORIDE	Documentary Standards Support	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 39(5)

Current DocID: [GUID-37709C8A-2523-4776-BA77-C09F15826F20_5_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M53870_05_01

DOI ref: [hh6q3](#)

OFFICIAL