

Status: Currently Official on 15-Feb-2025
 Official Date: Official as of 01-May-2019
 Document Type: USP Monographs
 DocId: GUID-C8ABA556-13A1-4697-874A-6AF16409B648_4_en-US
 DOI: https://doi.org/10.31003/USPNF_M53526_04_01
 DOI Ref: 920k1

© 2025 USPC
 Do not distribute

Metoprolol Tartrate Injection

DEFINITION

Metoprolol Tartrate Injection is a sterile solution of Metoprolol Tartrate in Water for Injection. It contains Sodium Chloride as a tonicity-adjusting agent. It contains NLT 90.0% and NMT 110.0% of the labeled amount of metoprolol tartrate $[(C_{15}H_{25}NO_3)_2 \cdot C_4H_6O_6]$.

IDENTIFICATION

Change to read:

- A. ▲The retention time of metoprolol of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*. ▲ (USP 1-May-2019)

Add the following:

- ▲ B. The UV-Vis spectrum of the major peak of the *Diluted sample stock solution* corresponds to that of the *Diluted standard stock solution*, as obtained in the *Assay*. ▲ (USP 1-May-2019)

ASSAY

Change to read:

• PROCEDURE

Solution A: 9.0 mg/mL of [sodium chloride](#) in [water](#)

Mobile phase: 961 mg of [1-pentanesulfonic acid sodium salt](#) (monohydrate) and 82 mg of [anhydrous sodium acetate](#) in a mixture of 550 mL of [methanol](#) and 470 mL of water. Add 0.57 mL of glacial acetic acid.

Internal standard solution: 0.72 mg/mL of [USP Oxprenolol Hydrochloride RS](#) in freshly prepared *Mobile phase*

Standard stock solution: 1 mg/mL of [USP Metoprolol Tartrate RS](#) in *Solution A*

Standard solution: *Standard stock solution* and *Internal standard solution* (1:1)

▲Diluted standard stock solution: 0.1 mg/mL of [USP Metoprolol Tartrate RS](#) from *Standard stock solution* in *Solution A* ▲ (USP 1-May-2019)

Sample stock solution: Nominally 1 mg/mL of metoprolol tartrate from *Injection* prepared as follows. Transfer an accurately measured volume of *Injection*, if necessary, into *Solution A*.

Sample solution: *Sample stock solution* and *Internal standard solution* (1:1)

▲Diluted sample stock solution: Nominally 0.1 mg/mL of metoprolol tartrate from *Sample stock solution* in *Solution A* ▲ (USP 1-May-2019)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm. ▲ For *Identification B*, use a diode array detector in the range of 200–400 nm. ▲ (USP 1-May-2019)

Column: 3.9-mm × 30-cm; ▲10-μm ▲ (USP 1-May-2019) packing L1

Flow rate: 1 mL/min

Injection volume: 10 μL

System suitability

Sample: *Standard solution*

[NOTE—The relative retention times for metoprolol and oxprenolol are 0.8 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between metoprolol and oxprenolol

Relative standard deviation: NMT 2.0% from three replicate injections

Analysis

Samples: *Standard solution*, ▲*Diluted standard stock solution*, ▲ (USP 1-May-2019) *Sample solution*, and ▲*Diluted sample stock solution*. [NOTE—The *Diluted standard stock solution* and *Diluted sample stock solution* are used for *Identification B*.] ▲ (USP 1-May-2019)

Calculate the percentage of the labeled amount of metoprolol tartrate $[(C_{15}H_{25}NO_3)_2 \cdot C_4H_6O_6]$ in the portion of *Injection* taken:

$$\text{Result} = (R_u/R_s) \times (C_s/C_u) \times 100$$

R_u = peak response ratio of metoprolol to oxprenolol from the *Sample solution*

R_s = peak response ratio of metoprolol to oxprenolol from the *Standard solution*

C_s = concentration of [USP Metoprolol Tartrate RS](#) in the *Standard solution* ($\mu\text{g/mL}$)

C_u = nominal concentration of metoprolol tartrate in the *Sample solution* ($\mu\text{g/mL}$)

Acceptance criteria: 90.0%–110.0%

IMPURITIES

Add the following:

▲. ORGANIC IMPURITIES

Solution A: 1.3 g/L of [sodium dodecyl sulfate](#) in 0.1% (w/v) [phosphoric acid](#)

Solution B: 9.0 mg/mL of [sodium chloride](#) in [water](#). [NOTE—This solution is only needed when sample dilution is required.]

Mobile phase: [Acetonitrile](#) and *Solution A* (40:60)

System suitability solution: 5 $\mu\text{g/mL}$ each of [USP Metoprolol Tartrate RS](#), [USP Metoprolol Related Compound A RS](#), [USP Metoprolol Related Compound B RS](#), and [USP Metoprolol Related Compound C RS](#) in *Mobile phase*

Standard solution: 2.5 $\mu\text{g/mL}$ each of [USP Metoprolol Tartrate RS](#) and [USP Metoprolol Related Compound C RS](#) in *Mobile phase*

Sample solution: Nominally 1 mg/mL of metoprolol tartrate from a volume of *Injection*. Transfer an accurately measured volume of *Injection*, if necessary, into *Solution B*.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 223 nm

Column: 4.6-mm \times 15-cm; 5- μm packing [L7](#)

Column temperature: 30°

Flow rate: 1 mL/min

Injection volume: 10 μL

System suitability

Samples: *System suitability solution* and *Standard solution*

[NOTE—The relative retention times for metoprolol and metoprolol related compounds are listed in [Table 1](#).]

Suitability requirements

Resolution: NLT 1.5 between metoprolol related compound A and metoprolol related compound B; NLT 2.5 between metoprolol related compound B and metoprolol related compound C, *System suitability solution*

Relative standard deviation: NMT 3% for metoprolol and metoprolol related compound C, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of metoprolol related compound C in the portion of *Injection* taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of metoprolol related compound C from the *Sample solution*

r_s = peak response of metoprolol related compound C from the *Standard solution*

C_s = concentration of [USP Metoprolol Related Compound C RS](#) in the *Standard solution* ($\mu\text{g/mL}$)

C_u = nominal concentration of metoprolol tartrate in the *Sample solution* ($\mu\text{g/mL}$)

Calculate the percentage of any unspecified degradation product in the portion of *Injection* taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of each unspecified degradation product from the *Sample solution*

r_s = peak response of metoprolol from the *Standard solution*

C_s = concentration of [USP Metoprolol Tartrate RS](#) in the *Standard solution* ($\mu\text{g/mL}$)

C_u = nominal concentration of metoprolol tartrate in the *Sample solution* ($\mu\text{g/mL}$)

Acceptance criteria: See [Table 1](#).

Table 1

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Tartaric acid	0.13	—
Metoprolol related compound C	0.64	0.4
Metoprolol related compound B ^a	0.73	—
Metoprolol related compound A ^a	0.83	—
Metoprolol	1.0	—
Any unspecified degradation product	—	0.2
Total degradation products	—	1.0▲ (USP 1-May-2019)

^a Specified impurities controlled in the drug substance. They are not to be included in the calculation of the total degradation products.

SPECIFIC TESTS

- **pH (791):** 5.0–8.0
- **BACTERIAL ENDOTOXINS TEST (85):** NMT 25.0 USP Endotoxin Units/mg of metoprolol tartrate
- **STERILITY TESTS (71), Test for Sterility of the Product to be Examined, Membrane Filtration:** Meets the requirements
- **OTHER REQUIREMENTS:** It meets the requirements in *Injections and Implanted Drug Products (1)*.

ADDITIONAL REQUIREMENTS

Change to read:

- **PACKAGING AND STORAGE:** Preserve in single-dose, light-resistant containers, preferably of Type I or Type II glass. ▲Store at controlled room temperature.▲ (USP 1-May-2019)

Change to read:

- **USP REFERENCE STANDARDS (11).**
[USP Metoprolol Tartrate RS](#)
- ▲ [USP Metoprolol Related Compound A RS](#)
1-(Ethylamino)-3-[4-(2-methoxyethyl)phenoxy]propan-2-ol.
C14H23NO3 253.34
[USP Metoprolol Related Compound B RS](#)
- 1-Chloro-3-[4-(2-methoxyethyl)phenoxy]propan-2-ol.
C12H17ClO3 244.71
[USP Metoprolol Related Compound C RS](#)
- 4-[2-Hydroxy-3-(isopropylamino)propoxy]benzaldehyde hydrochloride.
C13H19NO3.HCl 273.76▲ (USP 1-May-2019)
[USP Oxprenolol Hydrochloride RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
METOPROLOL TARTRATE INJECTION	Documentary Standards Support	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 43(4)

Current DocID: GUID-C8ABA556-13A1-4697-874A-6AF16409B648_4_en-US

DOI: https://doi.org/10.31003/USPNF_M53526_04_01

DOI ref: [920k1](#)