

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: NF Monographs
DocId: GUID-98C485B2-8A7F-429F-BBA5-71608D704F42_2_en-US
DOI: https://doi.org/10.31003/USPNF_M52650_02_01
DOI Ref: xnp2n

© 2025 USPC
Do not distribute

Methylparaben

$C_8H_8O_3$ 152.15
Benzoic acid, 4-hydroxy-, methyl ester;
Methyl *p*-hydroxybenzoate CAS RN®: 99-76-3.

DEFINITION

Methylparaben contains NLT 98.0% and NMT 102.0% of $C_8H_8O_3$.

IDENTIFICATION

Change to read:

- A. [▲ SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197M](#) ▲ (CN 1-MAY-2020)
- B. [MELTING RANGE OR TEMPERATURE \(741\)](#): 125°–128°

ASSAY

• PROCEDURE

Mobile phase, Sample solution, Standard solution B, and Chromatographic system: Proceed as described in the procedure for *Related Substances*.

System suitability

Sample: Standard solution B

Suitability requirements

Relative standard deviation: NMT 0.85% for 6 injections

Analysis

Samples: Sample solution and Standard solution B

Calculate the percentage of Methylparaben in the *Sample solution*:

$$\text{Result} = P \times (r_u \times C_s) / (r_s \times C_u)$$

P = labeled purity of [USP Methylparaben RS](#) expressed as a percentage

r_u = peak area of methylparaben from the *Sample solution*

C_s = concentration of methylparaben in *Standard solution B*

r_s = peak area of methylparaben from *Standard solution B*

C_u = concentration of Methylparaben in the *Sample solution*

Acceptance criteria: 98.0%–102.0%

IMPURITIES

Inorganic Impurities

- [RESIDUE ON IGNITION \(281\)](#): NMT 0.1%, determined on 1.0 g

Organic Impurities

• PROCEDURE: RELATED SUBSTANCES

Mobile phase: Methanol and a 6.8 g/L solution of potassium dihydrogen phosphate (65:35 v/v)

Sample solution: Dissolve 50.0 mg of Methylparaben in 2.5 mL of methanol, and dilute with *Mobile phase* to 50.0 mL. Dilute 10.0 mL of this solution with *Mobile phase* to 100.0 mL.

Standard solution A: 5.0 μ g/mL each of *p*-hydroxy benzoic acid and [USP Methylparaben RS](#) in *Mobile phase*

Standard solution B: Dissolve 50.0 mg of [USP Methylparaben RS](#) in 2.5 mL of methanol, and dilute with *Mobile phase* to 50.0 mL. Dilute 10.0 mL of this solution with *Mobile phase* to 100.0 mL.

Standard solution C: Dilute 1.0 mL of the *Sample solution* with *Mobile phase* to 20.0 mL. Dilute 1.0 mL of this solution with *Mobile phase* to 10.0 mL.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 272 nm

Column: 4.6-mm × 15-cm; 5-μm packing L1

Flow rate: 1.3 mL/min

Injection size: 10 μL

Run time: About 5 times the retention time of methylparaben

System suitability

Sample: *Standard solution A*

[*NOTE*—The retention time of methylparaben is about 2.3 min; the relative retention time for *p*-hydroxy benzoic acid is about 0.6.]

Suitability requirements

Resolution: NLT 2.0 between the *p*-hydroxybenzoic acid and methylparaben peaks

Analysis

Samples: *Sample solution* and *Standard solution C*

[*NOTE*—Disregard any limit that is 0.2 times the area of the principal peak in the chromatogram obtained with *Standard solution C* (0.1%).]

Acceptance criteria

***p*-Hydroxybenzoic acid:** The peak area in the *Sample solution*, multiplied by 1.4 to correct for the calculation of content, is NMT the area of the principal peak in *Standard solution C* (0.5%).

Unspecified impurities: The peak area of each impurity in the *Sample solution* is NMT the area of the principal peak in *Standard solution C* (0.5%).

Total impurities: The total peak area for all impurities in the *Sample solution* is NMT twice the area of the principal peak in *Standard solution C* (1.0%).

SPECIFIC TESTS

• COLOR OF SOLUTION

Sample solution: 100 mg/mL in alcohol

Comparison solution: Mix 2.4 mL of ferric chloride CS, 1.0 mL of cobaltous chloride CS, and 0.4 mL of cupric sulfate CS with 0.3 N hydrochloric acid to make 10 mL. Dilute 5 mL of this solution with 0.3 N hydrochloric acid to make 100 mL. [*NOTE*—Prepare and use this solution immediately.]

Analysis

Samples: Alcohol, *Sample solution*, and *Comparison solution*

Make the comparison by viewing the solutions downward in matched color-comparison tubes against a white surface (see [Color and Achromicity \(631\)](#)).

Acceptance criteria: The *Sample solution* is clear and not more intensely colored than alcohol or the *Comparison solution*.

• ACIDITY

Sample solution: To 2 mL of the *Sample solution* prepared in the test for *Color of Solution*, add 3 mL of alcohol, 5 mL of carbon dioxide-free water, and 0.1 mL of bromocresol green TS.

Analysis: Titrate with 0.10 N sodium hydroxide.

Acceptance criteria: NMT 0.1 mL is required to produce a blue color.

ADDITIONAL REQUIREMENTS

• PACKAGING AND STORAGE:

Preserve in well-closed containers.

• [USP REFERENCE STANDARDS \(11\)](#)

[USP Methylparaben RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
METHYLPARABEN	Documentary Standards Support	SE2020 Simple Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 36(5)

OFFICIAL