

Status: Currently Official on 18-Feb-2025
Official Date: Official as of 01-Jan-2018
Document Type: NF Monographs
DocId: GUID-AE7413C8-E39B-45DE-B5D9-AA18C5602C36_3_en-US
DOI: https://doi.org/10.31003/USPNF_M52530_03_01
DOI Ref: 1jxk6

© 2025 USPC
Do not distribute

Methylene Chloride

CH_2Cl_2 84.93

Methane, dichloro-;

Dichloromethane CAS RN®: 75-09-2.

DEFINITION

Methylene Chloride contains NLT 99.0% of methylene chloride (CH_2Cl_2). [CAUTION—Perform all steps involving evaporation of methylene chloride in a well-ventilated fume hood.]

IDENTIFICATION

• A.

Sample: 5 mL

Analysis: Place the *Sample* into a glass-stoppered, 10-mL conical flask, and shake for several min. Remove the stopper, quickly withdraw a portion of the vapor into a 50-mL syringe that is not fitted with a needle, and inject the vapor into a suitable evacuated gas cell.

Acceptance criteria: The IR absorption spectrum of the vapor shows strong doublet peaks at 7.8 and 7.9 μm and at 13.2 and 13.4 μm , and relatively few minor peaks.

ASSAY

• PROCEDURE

System suitability solution: Methylene chloride and chloroform (3:7)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: GC

Detector: Thermal conductivity (under typical conditions)

Column: 4-mm \times 1.8-m; packed with 15% liquid phase G18 on 30- to 60-mesh S1C unsilanized support

Temperatures

Injection port: 200°

Detector: 250°

Column: 60°

Carrier gas: Helium

Flow rate: 20 mL/min

Injection volume: 1 μL

System suitability

Sample: System suitability solution

Suitability requirements

Resolution: NLT 4.0 between methylene chloride and chloroform

Tailing factor: NMT 1.4

Relative standard deviation: The peak response ratio does not exceed 2% for five replicate injections.

Analysis

Sample: Methylene Chloride

Inject the *Sample*, and determine the peak responses by any convenient means. [NOTE—The order of elution is amylenes (5 or 6 peaks), if present, and then methylene chloride.]

Calculate the percentage of methylene chloride (CH_2Cl_2) in the portion of sample taken:

$$\text{Result} = (r_u/r_T) \times 100$$

r_u = peak response of methylene chloride

r_T = sum of all the peak responses

Acceptance criteria: NLT 99.0%

IMPURITIES**• LIMIT OF NONVOLATILE RESIDUE****Sample:** 50 g**Analysis:** Evaporate the *Sample* in a platinum or porcelain dish on a steam bath, and dry at 105° for 30 min.**Acceptance criteria:** NMT 0.002%; NMT 1 mg of residue**SPECIFIC TESTS****• LIMIT OF HYDROGEN CHLORIDE****Sample:** 20.0 mL**Analysis:** Into each of two glass-stoppered, 50-mL color-comparison cylinders having an internal diameter of 20 mm, place 10 mL of water, 2 drops of phenolphthalein TS, and sufficient 0.010 N sodium hydroxide to produce a pink color that persists after vigorous shaking for 30 s and is of equal intensity in each cylinder.[**NOTE**—In the following step, take special care to avoid contamination with carbon dioxide.]Into one of the cylinders, place the *Sample* and 0.70 mL of 0.010 N sodium hydroxide, and shake again.**Acceptance criteria:** NMT 0.001%; the pink color in the sample cylinder is at least as intense as that in the comparison cylinder, and the color persists for NLT 15 min.**• SPECIFIC GRAVITY (841):** 1.318–1.322**• WATER DETERMINATION, Method I (921):** NMT 0.02%**• FREE CHLORINE****Sample:** 10 mL**Analysis:** To the *Sample* add 10 mL of water and 0.1 mL of potassium iodide TS, shake for 2 min, and allow the liquids to separate.**Acceptance criteria:** The lower layer does not show a violet tint.**ADDITIONAL REQUIREMENTS****• PACKAGING AND STORAGE:** Preserve in tight containers.**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
METHYLENE CHLORIDE	Documentary Standards Support	SE2020 Simple Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SE2020 Simple Excipients

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. Information currently unavailable

Current DocID: [GUID-AE7413C8-E39B-45DE-B5D9-AA18C5602C36_3_en-US](#)**Previous DocID:** [GUID-AE7413C8-E39B-45DE-B5D9-AA18C5602C36_1_en-US](#)**DOI:** https://doi.org/10.31003/USPNF_M52530_03_01**DOI ref:** [1jxk6](#)