

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-DBEB6C2A-1ABE-4125-91CF-410F473BD05F_4_en-US
DOI: https://doi.org/10.31003/USPNF_M51270_04_01
DOI Ref: yz55t

© 2025 USPC
Do not distribute

Methohexital

$C_{14}H_{18}N_2O_3$ 262.30

2,4,6(1*H*,3*H*,5*H*)-Pyrimidinetrione, 1-methyl-5-(1-methyl-2-pentynyl)-5-(2-propenyl)-, (\pm)-.

(\pm)-5-Allyl-1-methyl-5-(1-methyl-2-pentynyl)barbituric acid CAS RN®: 151-83-7; UNII: E5B8ND5IPE.

» Methohexital contains not less than 98.0 percent and not more than 101.0 percent of $C_{14}H_{18}N_2O_3$, calculated on the anhydrous basis.

Packaging and storage—Preserve in well-closed containers.

USP REFERENCE STANDARDS (11)—

[USP Methohexital RS](#)

Change to read:

▲ [SPECTROSCOPIC IDENTIFICATION TESTS \(197\)](#), *Infrared Spectroscopy: 197S* ▲ (CN 1-May-2020) —

Solution: 1 in 100.

Medium: chloroform.

MELTING RANGE (741): between 92° and 96°, but the range between beginning and end of melting does not exceed 3°.

WATER DETERMINATION, Method I (921): not more than 2.0%.

CHLORIDE (221):—Dissolve 200 mg in a mixture of 75 mL of ether and 25 mL of water, agitate, and allow to separate: the water solution shows no more chloride than corresponds to 0.17 mL of 0.010 N hydrochloric acid (0.03%).

ORDINARY IMPURITIES (466)—

Test solution: methanol.

Standard solution: methanol.

Eluant: a mixture of chloroform and acetone (7:3).

Visualization—Expose the plate to chlorine gas for 1 minute, and air-dry the plate at room temperature for 2 minutes. Prepare a solution of 0.5 g of potassium iodide in 50 mL of water, and prepare a solution of 1.5 g of soluble starch in 50 mL of hot water. Mix 10 mL of each solution with 4 mL of alcohol to obtain the *Detection reagent*. [NOTE—The *Detection reagent* so obtained may be used for up to 3 or 4 days.] Spray the plate with the *Detection reagent*.

Assay—Dissolve about 100 mg of Methohexital, accurately weighed, in chloroform, and dilute quantitatively and stepwise with chloroform to obtain a solution having a concentration of about 10 mg per mL. Dissolve an accurately weighed quantity of [USP Methohexital RS](#) in chloroform, and dilute quantitatively and stepwise with chloroform to obtain a Standard solution having a known concentration of about 10 mg per mL. Concomitantly determine the absorbances of both solutions in 0.1-mm cells at the wavelength of maximum absorbance at about 5.93 μ m, with a suitable spectrophotometer, using chloroform as the blank. Calculate the quantity, in mg, of $C_{14}H_{18}N_2O_3$ in the portion of

Methohexital taken by the formula:

$$10C(A_u/A_s)$$

in which C is the concentration, in mg per mL, of [USP Methohexital RS](#) in the Standard solution; and A_u and A_s are the absorbances of the solution of Methohexital and the *Standard solution*, respectively.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
METHOHEXITAL	Documentary Standards Support	SM52020 Small Molecules 5

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 42(5)

Current DocID: GUID-DBEB6C2A-1ABE-4125-91CF-410F473BD05F_4_en-US

DOI: https://doi.org/10.31003/USPNF_M51270_04_01

DOI ref: yz55t

OFFICIAL