

Status: Currently Official on 15-Feb-2025
Official Date: Official as of 01-Aug-2024
Document Type: USP Monographs
DocId: GUID-34D24B58-3A6A-4EE2-BDC8-5EC2B9901046_2_en-US
DOI: https://doi.org/10.31003/USPNF_M49980_02_01
DOI Ref: rd7bk

© 2025 USPC
Do not distribute

Methadone Hydrochloride Tablets

DEFINITION

Methadone Hydrochloride Tablets contain NLT 93.0% and NMT 107.0% of the labeled amount of methadone hydrochloride ($C_{21}H_{27}NO \cdot HCl$).

IDENTIFICATION

Change to read:

- A. [THIN-LAYER CHROMATOGRAPHIC IDENTIFICATION TEST \(201\)](#).

Sample: Equivalent to 5 mg of methadone hydrochloride from a quantity of finely powdered Tablets

▲ (USP 1-Aug-2024)

Developing solvent system: Alcohol, glacial acetic acid, and water (5:3:2)

Analysis: Shake the *Sample* with 5 mL of sodium carbonate TS, and extract with 5 mL of chloroform. Proceed as directed using iodoplatinate TS to visualize the spots.

Acceptance criteria: Meet the requirements

Add the following:

- ▲ B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.▲ (USP 1-Aug-2024)

ASSAY

Change to read:

- **PROCEDURE**

Mobile phase: [Acetonitrile](#) and 0.03 M [monobasic potassium phosphate](#) (40:60). Adjust with [phosphoric acid](#) to a pH of 3.2.

Standard solution: 0.4 mg/mL of [USP Methadone Hydrochloride RS](#) in *Mobile phase*

Sample solution: ▲Nominally 0.4 mg/mL of methadone hydrochloride in *Mobile phase* prepared as follows. Transfer an amount of finely powdered Tablets (NLT 20) equivalent to 10 mg of methadone hydrochloride to a 25-mL volumetric flask. Add 10 mL of *Mobile phase*, and sonicate briefly. Shake by mechanical means for about 15 min, dilute with *Mobile phase* to volume. Pass through a suitable filter of 0.45- μ m pore size.▲ (USP 1-Aug-2024)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 3.9-mm \times 30-cm; ▲10- μ m▲ (USP 1-Aug-2024) packing [L11](#)

Flow rate: 1.5 mL/min

Injection volume: 10 μ L

Run time: NLT 1.5 times the retention time of methadone▲ (USP 1-Aug-2024)

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT ▲1.0%▲ (USP 1-Aug-2024)

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of methadone hydrochloride ($C_{21}H_{27}NO \cdot HCl$) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of methadone from the *Sample solution*

r_s = peak response of methadone from the *Standard solution*

C_s = concentration of [USP Methadone Hydrochloride RS](#) in the *Standard solution* (mg/mL) C_u = nominal concentration of methadone hydrochloride in the *Sample solution* (mg/mL)**Acceptance criteria:** 93.0%–107.0%

PERFORMANCE TESTS

Change to read:

- [Dissolution \(711\)](#)

Medium: [Water](#): 500 mL**Apparatus 1:** 100 rpm**Time:** 45 min

▲ Determine the percentage of the labeled amounts of methadone hydrochloride ($C_{21}H_{27}NO \cdot HCl$) dissolved by using one of the following procedures.

Spectroscopic procedure ▲ (USP 1-Aug-2024)**Standard solution:** [USP Methadone Hydrochloride RS](#) in *Medium*

Sample solution: ▲ Pass a portion of the solution under test through a suitable filter. Transfer a volume of the filtrate equivalent to about 400 µg of methadone hydrochloride into a suitable separator. Add 1 mL of [glacial acetic acid](#) and 20 mL of a solution of bromocresol purple prepared by dissolving 200 mg of [bromocresol purple](#) in 1000 mL of dilute [glacial acetic acid](#) (1 in 50). Mix, and extract with 20.0 mL of [chloroform](#). ▲ (USP 1-Aug-2024)

Instrumental conditions

Mode: Vis**Analytical wavelength:** 405 nm

Analysis

▲ **Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of methadone hydrochloride ($C_{21}H_{27}NO \cdot HCl$) dissolved in comparison with the chloroform extract similarly prepared from the *Standard solution*:

$$\text{Result} = (A_u/A_s) \times (C_s/C_u) \times V \times (1/L) \times 100$$

 A_u = absorbance of the *Sample solution* A_s = absorbance of the *Standard solution* C_s = concentration of [USP Methadone Hydrochloride RS](#) in the *Standard solution* (mg/mL) C_u = nominal concentration of methadone hydrochloride in the *Sample solution* (mg/mL) V = volume of *Medium*, 500 mL L = label claim (mg/Tablet)

Chromatographic procedure

Buffer: Dissolve 9.8 g of [phosphoric acid](#) in 1000 mL of [water](#). Adjust with [triethylamine](#) to a pH of 3.6.**Mobile phase:** [Acetonitrile](#) and *Buffer* (30:70)

Standard stock solution: 0.25 mg/mL of [USP Methadone Hydrochloride RS](#) prepared as follows. Transfer a suitable amount of [USP Methadone Hydrochloride RS](#) to a volumetric flask and add [acetonitrile](#) to 20% of the flask volume. Add [water](#) to 60% of the flask volume and sonicate for about 5 min to dissolve. Dilute with [water](#) to volume.

Standard solution: 20 µg/mL of [USP Methadone Hydrochloride RS](#) in *Medium* from the *Standard stock solution*

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size. Discard the first few milliliters of the filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC**Detector:** UV 292 nm**Column:** 4.6-mm × 10-cm; 3.5-µm packing [L7](#)**Column temperature:** 30°**Flow rate:** 1 mL/min**Injection volume:** 50 µL**Run time:** NLT 1.3 times the retention time of methadone

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** Standard solution and Sample solutionCalculate the percentage of the labeled amount of methadone hydrochloride ($C_{21}H_{27}NO \cdot HCl$) dissolved:

$$\text{Result} = (r_U/r_S) \times (C_S/L) \times V \times 100$$

 r_U = peak response of methadone from the Sample solution r_S = peak response of methadone from the Standard solution C_S = concentration of [USP Methadone Hydrochloride RS](#) in the Standard solution (mg/mL) L = label claim (mg/Tablet) V = volume of Medium, 500 mL▲ (USP 1-Aug-2024)**Tolerances:** NLT 75% (Q) of the labeled amount of methadone hydrochloride ($C_{21}H_{27}NO \cdot HCl$) is dissolved

- [Uniformity of Dosage Units \(905\)](#): Meet the requirements

Add the following:**▲ IMPURITIES****• ORGANIC IMPURITIES****Buffer:** Dissolve 9.8 g of [phosphoric acid](#) in 1000 mL of [water](#). Adjust with [triethylamine](#) to a pH of 3.6.**Mobile phase:** [Acetonitrile](#) and [Buffer](#) (30:70)**Diluent:** [Acetonitrile](#) and [Buffer](#) (40:60)**Standard stock solution A:** 0.25 mg/mL of [USP Methadone Hydrochloride RS](#) prepared as follows. Transfer a suitable amount of [USP Methadone Hydrochloride RS](#) to a volumetric flask and add [acetonitrile](#) to 20% of the flask volume. Add [water](#) to 60% of the flask volume and sonicate for about 5 min to dissolve. Dilute with [water](#) to volume.**Standard stock solution B:** 0.1 mg/ml of [USP Methadone Hydrochloride RS](#) in [Mobile phase](#) from [Standard stock solution A](#)**Standard solution:** 0.5 µg/mL of [USP Methadone Hydrochloride RS](#) in [Diluent](#) from [Standard stock solution B](#)**Sensitivity solution:** 0.25 µg/mL of [USP Methadone Hydrochloride RS](#) in [Diluent](#) from the [Standard solution](#)**Sample solution:** Nominally 0.5 mg/mL of methadone hydrochloride prepared as follows. Transfer Tablets (NLT 5) equivalent to 50 mg of methadone hydrochloride to a 100-mL volumetric flask. Add 80 mL of [Diluent](#) and shake for about 60 min. Dilute with [Diluent](#) to volume. Pass through a suitable filter of 0.45-µm pore size. Discard the first few milliliters of the filtrate.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 210 nm**Column:** 4.6-mm × 25-cm; 3.5-µm packing [L7](#)**Column temperature:** 30°**Flow rate:** 1 mL/min**Injection volume:** 50 µL**Run time:** NLT 3.5 times the retention time of methadone**System suitability****Samples:** Standard solution and Sensitivity solution**Suitability requirements****Tailing factor:** NMT 2.0, Standard solution**Relative standard deviation:** NMT 5.0%, Standard solution**Signal-to-noise ratio:** NLT 10, Sensitivity solution**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of any individual degradation product in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of any individual degradation product from the Sample solution r_S = peak response of methadone from the Standard solution C_S = concentration of [USP Methadone Hydrochloride RS](#) in the Standard solution (µg/mL) C_U = nominal concentration of methadone hydrochloride in the Sample solution (µg/mL)

Acceptance criteria: The reporting threshold is 0.05%.

Any individual degradation product: NMT 0.2%

Total degradation products: NMT 1.2%▲ (USP 1-Aug-2024)

ADDITIONAL REQUIREMENTS

Change to read:

• **PACKAGING AND STORAGE:** Preserve in well-closed containers. ▲Store at controlled room temperature and protect from light.▲ (USP 1-Aug-2024)

• **USP REFERENCE STANDARDS (11):**

[USP Methadone Hydrochloride RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
METHADONE HYDROCHLORIDE TABLETS	Documentary Standards Support	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 47(4)

Current DocID: GUID-34D24B58-3A6A-4EE2-BDC8-5EC2B9901046_2_en-US

DOI: https://doi.org/10.31003/USPNF_M49980_02_01

DOI ref: [rd7bk](#)